The iridoid glucoside, antirrhinoside, is constitutively distributed throughout Antirrhinum majus L. in a manner consistent with its possible role as an allelochemical, but there is no evidence that it has a defensive function with respect to insect herbivory. To address this question, two generalist herbivores, Lymantria dispar L. (gypsy moth) and Trichoplusia ni Hübner (cabbage looper) were chosen for feeding trials on excised whole leaves of A. majus and in artificial diet assays. In leaf excision feeding trials, fourth instar gypsy moth rejected, without sampling, the leaves of A. majus regardless of what node the leaf was excised from. In contrast, fourth instar cabbage looper readily fed on the excised leaves, and antirrhinoside was not found in their bodies or feces (frass) as determined by thin layer and high-pressure liquid chromatography. In the leaf and diet assays, a second major leaf iridoid in A. majus, antirrhide, was found in both cabbage looper and gypsy moth frass. In diet feeding assays, the growth of gypsy moth and cabbage looper were not inhibited by methanol extracts, iridoid fractions, or pure antirrhinoside at concentrations of 0.6% in diet, but cabbage looper growth was enhanced. At an antirrhinoside concentration of 3.3% in diet, gypsy moth growth was reduced, whereas cabbage looper growth again increased significantly relative to the control. It is likely that antirrhinoside functions as defense against herbivory for one generalist insect herbivore but also, at low concentrations, enhances the growth of another.
Two iridoid glucosides isolated from leaves of Antirrhinum majus L. were identified as the known compounds antirrhinoside and antirrhide. Plants grown hydroponically demonstrated that antirrhinoside is present in all plant organs including the roots. In contrast, antirrhide is found only in leaves. Furthermore, both iridoids were identified in the main stem axillary leaves and leaves on the lateral branches. The highest concentrations of antirrhinoside were found in the main and lateral stems as well as the buds and flowers. As leaves age, for both cultivars, the levels of antirrhinoside drop significantly, and there is a corresponding increase in antirrhide. In spite of the different genetic backgrounds of the two cultivars, the overall distribution of the iridoids was similar during vegetative and flowering development. Radiolabeling of recently expanded axillary leaves with (14)CO(2) showed that both antirrhinoside and antirrhide were prominently labeled in the laminar tissue. However, only (14)C-antirrhinoside was recovered in the subtending petiole tissue, consistent with the suggestion that it is a phloem mobile compound.
A study of two related plants (Antirrhinum majus L. and Linaria vulgaris Mill.) containing the same defensive compound (the iridoid glucoside, antirrhinoside) but with reproductive strategies that differ during ontogeny was undertaken. Young leaves are important to plants due to their higher photosynthetic rates and, therefore, should be better protected with higher concentrations of defensive compounds such as antirrhinoside. Declining concentrations of antirrhinoside as leaves aged was found for A. majus but this was generally not the case for L. vulgaris. Concentrations of antirrhinoside in root tissue were low and constant throughout ontogeny for A. majus whereas for L. vulgaris root levels of antirrhinoside were high during the period when vegetative growth is its sole means of reproduction. Antirrhinoside in L. vulgaris roots declined relative to A. majus roots during budding and flowering. During flowering, significantly less antirrhinoside and relative biomass are devoted to L. vulgaris flowers than in A. majus. While these findings are consistent with Optimal Defense Theory (ODT) further work on the distribution of antirrhinoside and the effect of insect herbivory on plant fitness in other related species is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.