The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral-embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose- and time-dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE-ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM-PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE-ASARM. Importantly, antibody-mediated neutralization of endogenous MEPE-ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE-ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.
The osteocyte product sclerostin is emerging as an important paracrine regulator of bone mass. It has recently been shown that osteocyte production of receptor activator of NF-kB ligand (RANKL) is important in osteoclastic bone resorption, and we reported that exogenous treatment of osteocytes with sclerostin can increase RANKL-mediated osteoclast activity. There is good evidence that osteocytes can themselves liberate mineral from bone in a process known as osteocytic osteolysis. In the current study, we investigated sclerostinstimulated mineral dissolution by human primary osteocyte-like cells (hOCy) and mouse MLO-Y4 cells. We found that sclerostin upregulated osteocyte expression of carbonic anhydrase 2 (CA2/Car2), cathepsin K (CTSK/Ctsk), and tartrate-resistant acid phosphatase (ACP5/Acp5). Because acidification of the extracellular matrix is a critical step in the release of mineral from bone, we further examined the regulation by sclerostin of CA2. Sclerostin stimulated CA2 mRNA and protein expression in hOCy and in MLO-Y4 cells. Sclerostin induced a decrease in intracellular pH (pHi) in both cell types as well as a decrease in extracellular pH (pHo) and the release of calcium ions from mineralized substrate. These effects were reversed in the co-presence of the carbonic anhydrase inhibitor, acetozolamide. Car2-siRNA knockdown in MLO-Y4 cells significantly inhibited the ability of sclerostin to both reduce the pHo and release calcium from a mineralized substrate. Knockdown in MLO-Y4 cells of each of the putative sclerostin receptors, Lrp4, Lrp5 and Lrp6, using siRNA, inhibited the sclerostin induction of Car2, Catk and Acp5 mRNA, as well as pHo and calcium release. Consistent with this activity of sclerostin resulting in osteocytic osteolysis, human trabecular bone samples treated ex vivo with recombinant human sclerostin for 7 days exhibited an increased osteocyte lacunar area, an effect that was reversed by the co-addition of acetozolamide. These findings suggest a new role for sclerostin in the regulation of perilacunar mineral by osteocytes.
The central importance of osteocytes in regulating bone homeostasis is becoming increasingly apparent. However, the study of these cells has been restricted by the relative paucity of cell line models, especially those of human origin. Therefore, we investigated the extent to which SaOS2 human osteosarcoma cells can differentiate into osteocyte-like cells. During culture under the appropriate mineralising conditions, SaOS2 cells reproducibly synthesised a bone-like mineralised matrix and temporally expressed the mature osteocyte marker genes SOST, DMP1, PHEX and MEPE and down-regulated expression of RUNX2 and COL1A1. SaOS2 cells cultured in 3D collagen gels acquired a dendritic morphology, characteristic of osteocytes, with multiple interconnecting cell processes. These findings suggest that SaOS2 cells have the capacity to differentiate into mature osteocyte-like cells under mineralising conditions. PTH treatment of SaOS2 cells resulted in strong down-regulation of SOST mRNA expression at all time points tested. Interestingly, PTH treatment resulted in the up-regulation of RANKL mRNA expression only at earlier stages of differentiation. These findings suggest that the response to PTH is dependent on the differentiation stage of the osteoblast/osteocyte. Together, our results demonstrate that SaOS2 cells can be used as a human model to investigate responses to osteotropic stimuli throughout differentiation to a mature osteocyte-like stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.