Intriguing ZnO dendritic nanostructures have been synthesized by a two-step chemical vapor deposition process. Regular nanorods grow uniformly to the presynthesized ZnO nanowires on silicon substrate, the secondary nanorods are single-crystal hexagonal ZnO, and each nanorod grows along the [0001] direction. The relationship between the secondary-grown nanorods and the primary ZnO nanowire is not epitaxial due to the high temperature-increasing rate during the rapid grown process. The size and morphology of branches can be controlled by adjusting the temperature and duration of growth. Room temperature photoluminescence (PL) and mircrowave absorption properties of the ZnO dendritic nanostructures have been investigated in detail. The value of minimum reflection loss for the composite with 50 vol % ZnO dendritic nanostructures is -42 dB at 3.6 GHz with a thickness of 5.0 mm. Hierarchical nanostructures of this type are ideal objects for the fabrication of nanoscale functional devices.
In this paper, ZnO nanowires and ZnO nanotrees have been prepared and their microwave absorption properties have been investigated in detail. Complex permittivity and permeability of the ZnO nanostructures and paraffin composites have been measured in a frequency of 0.1–18 GHz. Excellent microwave absorption performances have been observed in ZnO nanotree composite compared to ZnO nanowire composite, and the maximum absorption is enhanced as the concentration of the nanotrees increases in the composite. The value of minimum reflection loss for the composites with 60 vol % ZnO nanotrees is −58 dB at 4.2 GHz with a thickness of 4.0 mm. Such strong absorption is attributed to the unique isotropic antenna morphology of the ZnO nanotrees in the composite.
Hydrohausmannite nanoparticles (approximately 10 nm) were prepared by the hydrothermal method at 100 degrees C for 72 h. Subsequent annealing was done in air at 400 degrees C and 800 degrees C for 10 h, Mn(3)O(4) nanoparticles (approximately 25 nm) and 3D Mn(2)O(3) porous networks were obtained, respectively. The products were characterized by XRD, TEM, SAED and FESEM. Time-dependent experiments were carried out to exhibit the formation process of the Mn(2)O(3) networks. Their microwave absorption properties were investigated by mixing the product and paraffin wax with 50 vol%. The Mn(3)O(4) nanoparticles possess excellent microwave absorbing properties with the minimum reflection loss of -27.1 dB at 3.1 GHz. In contrast, the Mn(2)O(3) networks show the weakest absorption of all samples. The absorption becomes weaker with the annealing time increasing at 800 degrees C. The attenuation of microwave can be attributed to dielectric loss and their absorption mechanism was discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.