Apoptosis is a contributing cause of dopaminergic neuron loss in Parkinson disease. Recent work has shown that erythropoietin (EPO) offers protection against apoptosis in a wide variety of tissues. We demonstrate that exposure of PC12 cells to 1-methyl-4-phenylpyridinium ion (MPP(+)) with recombinant human EPO, significantly decreased apoptosis as measured by TUNEL and caspase-3 activity when compared to MPP(+) treatment alone. EPO induced sustained phosphorylation of Akt and its substrate, GSK-3beta, reduced caspase-3 activities in PC12 cells. The anti-apoptotic effect of EPO was abrogated by co-treatment with LY294002, the specific blocker of phosphatidylinositol 3-kinase (PI3K). The effects of EPO on GSK-3beta and caspase-3 activities were also blocked by LY294002. LiCl, the inhibitor of GSK-3beta, downregulated the caspase-3 activity and blocked the apoptosis induced by MPP(+). Finally, we determined that EPO transiently activated the ERK signaling pathway, but PD98059, a specific inhibitor of ERK, does not alter the survival effect of EPO in this model system. Thus, these findings indicate that EPO protects against apoptosis in PC12 cells exposed to MPP(+), through the Akt/GSK-3beta/caspase-3 signaling pathway, but the ERK pathway is not involved in the EPO-dependent survival enhancing effect in this model system.
BackgroundMicroglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO) and several pro-inflammatory cytokines. Lipoxins (LXs) and aspirin-triggered LXs (ATLs) are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL) on infiammatory responses induced by lipopolysaccharide (LPS) in murine microglial BV-2 cells.MethodsBV-2 cells were treated with ATL prior to LPS exposure, and the effects of such treatment production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) were analysed by Griess reaction, ELISA, western blotting and quantitative RT-PCR. Moreover, we investigated the effects of ATL on LPS-induced nuclear factor-κB (NF-κB) activation, phosphorylation of mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1) activation.ResultsATL inhibited LPS-induced production of NO, IL-1β and TNF-α in a concentration-dependent manner. mRNA expressions for iNOS, IL-1β and TNF-α in response to LPS were also decreased by ATL. These effects were inhibited by Boc-2 (a LXA4 receptor antagonist). ATL significantly reduced nuclear translocation of NF-κB p65, degradation of the inhibitor IκB-α, and phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in BV-2 cells activated with LPS. Furthermore, the DNA binding activity of NF-κB and AP-1 was blocked by ATL.ConclusionsThis study indicates that ATL inhibits NO and pro-inflammatory cytokine production at least in part via NF-κB, ERK, p38 MAPK and AP-1 signaling pathways in LPS-activated microglia. Therefore, ATL may have therapeutic potential for various neurodegenerative diseases.
For applications in ultrafiltration membranes, cancer cell uptake, bioimaging, and diagnostics, a reverse dissolution approach, where swollen poly(vinyl alcohol) (PVA) particles are added to a butyraldehyde solution in ethanol, is employed to synthesize poly(vinyl butyral) (PVB) with high contents of butyral groups. The final butyral group content (up to 84%) of PVB is found to be dependent strongly on the initial condensed state of PVA, the degree of polymerization of PVA, the purity and volume of ethanol, and the pH value. A maximum of butyral group content may be obtained under conditions: swollen PVA particles, (95 vol %) ethanol of 125−150 mL, and pH 1. This reverse dissolution approach has advantages such as a mild reaction condition (70 °C), no predissolution of PVA at high temperatures, no vacuum removal of water during reaction, and low water consumption in post-treatment of the product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.