Observational evidence is presented to show a teleconnection between the central Pacific and East Asia during the extreme phases of ENSO cycles. This Pacific-East Asian teleconnection is confined to the lower troposphere. The key system that bridges the warm (cold) events in the eastern Pacific and the weak (strong) East Asian winter monsoons is an anomalous lower-tropospheric anticyclone (cyclone) located in the western North Pacific. The western North Pacific wind anomalies develop rapidly in late fall of the year when a strong warm or cold event matures. The anomalies persist until the following spring or early summer, causing anomalously wet (dry) conditions along the East Asian polar front stretching from southern China northeastward to the east of Japan (Kuroshio extension). Using atmospheric general circulation and intermediate models, the authors show that the anomalous Philippine Sea anticyclone results from a Rossby-wave response to suppressed convective heating, which is induced by both the in situ ocean surface cooling and the subsidence forced remotely by the central Pacific warming. The development of the anticyclone is nearly concurrent with the enhancement of the local sea surface cooling. Both the anticyclone and the cooling region propagate slowly eastward. The development and persistence of the teleconnection is primarily attributed to a positive thermodynamic feedback between the anticyclone and the sea surface cooling in the presence of mean northeasterly trades. The rapid establishment of the Philippine Sea wind and SST anomalies implies the occurrence of extratropical-tropical interactions through cold surge-induced exchanges of surface buoyancy flux. The central Pacific warming plays an essential role in the development of the western Pacific cooling and the wind anomalies by setting up a favorable environment for the anticyclone-SST interaction and midlatitude-tropical interaction in the western North Pacific.
Analyses of 50-yr NCEP-NCAR reanalysis data reveal remarkably different interannual variability between the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) in their temporalspatial structures, relationships to El Niño, and teleconnections with midlatitude circulations. Thus, two circulation indices are necessary, which measure the variability of the ISM and WNPSM, respectively. A weak WNPSM features suppressed convection along 10Њ-20ЊN and enhanced rainfall along the mei-yu/baiu front. So the WNPSM index also provides a measure for the east Asian summer monsoon. An anomalous WNPSM exhibits a prominent meridional coupling among the Australian high, cross-equatorial flows, WNP monsoon trough, WNP subtropical high, east Asian subtropical front, and Okhotsk high. The WNP monsoon has leading spectral peaks at 50 and 16 months, whereas the Indian monsoon displays a primary peak around 30 months. The WNPSM is weak during the decay of an El Niño, whereas the ISM tends to abate when an El Niño develops. Since the late 1970s, the WNPSM has become more variable, but its relationship with El Niño remained steady; in contrast, the ISM has become less variable and its linkage with El Niño has dramatically declined. These contrasting features are in part attributed to the differing processes of monsoon-ocean interaction.Also found is a teleconnection between a suppressed WNPSM and deficient summer rainfall over the Great Plains of the United States. This boreal summer teleconnection is forced by the heat source fluctuation associated with the WNPSM and appears to be established through excitation of Rossby wave trains and perturbation of the jet stream that further excites downstream optimum unstable modes.
Asian-Australian monsoon (A-AM) anomalies depend strongly on phases of El Nin ˜o (La Nin ˜a). Based on this distinctive feature, a method of extended singular value decomposition analysis was developed to analyze the changing characteristics of A-AM anomalies during El Nin ˜o (La Nin ˜a) from its development to decay. Two off-equatorial surface anticyclones dominate the A-AM anomalies during an El Nin ˜oone over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). The SIO anticyclone, which affects climate conditions over the Indian Ocean, eastern Africa, and India, originates during the summer of a growing El Nin ˜o, rapidly reaches its peak intensity in fall, and decays when El Nin ˜o matures. The WNP anticyclone, on the other hand, forms in fall, attains maximum intensity after El Nin ˜o matures, and persists through the subsequent spring and summer, providing a prolonged impact on the WNP and east Asian climate. The monsoon anomalies associated with a La Nin ˜a resemble those during an El Nin ˜o but with cyclonic anomalies. From the development summer to the decay summer of an El Nin ˜o (La Nin ˜a), the anomalous sea level pressure, low-level winds, and vertical motion tend to reverse their signs in the equatorial Indian and western Pacific Oceans (10ЊS-20ЊN, 40Њ-160ЊE). This suggests that the tropospheric biennial oscillation is intimately linked to the turnabouts of El Nin ˜o and La Nin ˜a.The remote El Nin ˜o forcing alone can explain neither the unusual amplification of the SIO anticyclone during a developing El Nin ˜o nor the maintenance of the WNP anticyclone during a decaying El Nin ˜o. The atmosphere-ocean conditions in the two anticyclone regions are similar, namely, a zonal sea surface temperature (SST) dipole with cold water to the east and warm water to the west of the anticyclone center. These conditions result from positive feedback between the anomalous anticyclone and the SST dipole, which intensifies the coupled mode in the SIO during El Nin ˜o growth and maintains the coupled mode in the WNP during El Nin ˜o decay. The interactions in the two anticyclone regions share common wind evaporation/entrainment and cloud-radiation feedback processes but they differ with regard to the oceanic dynamics (vertical and horizontal advection and thermocline adjustment by oceanic waves). The outcome of the interactions in both regions, however, depends crucially on the climatological surface winds. The SIO-coupled mode is triggered by El Nin ˜o-induced subsidence and alongshore winds off the coast of Sumatra. However, other independent El Nin ˜o local and remote forcing can also trigger this coupled mode.The traditional view has regarded SST anomalies in the Indian and western Pacific Oceans as causing the A-AM variability. The present analysis suggests that the SST anomalies in these warm ocean regions are, to a large extent, a result of anomalous monsoons. Thus, the atmosphere-warm ocean interaction may significantly modify the impacts of remote El Nin ˜o forcing and should be ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.