Summary: PI/AT hybrid materials were prepared by blending of poly(amic acid) and purified AT as a type of fibrillar clays. The friction and wear behaviors of the PI hybrids were evaluated on a ball‐on‐disc wear tester. The particle size of AT in the hybrid containing 5 wt.‐% AT was about 10–100 nm in diameter and 100–1 000 nm in length. Tensile tests on the PI hybrids showed that the strength and the toughness of PI/AT hybrid materials were improved simultaneously when the content of AT was less than 5 wt.‐%. The friction coefficient and wear rate of the PI hybrids first decreased and then increased with increasing content of AT. The wear rate of the hybrid containing 3 wt.‐% AT was more than 6 times lower than that of pure PI. SEM examination of worn surfaces showed that type of wear changed from adhesive wear of pure PI into abrasive wear of the PI hybrids with adding AT to PI matrix. Debris analysis suggested that AT as filler inside the PI matrix could prevent the formation of bigger debris and a chemical reaction that occurred during the friction process of pure PI but not in the hybrids.A plot of the calculated wear rate versus filler content.magnified imageA plot of the calculated wear rate versus filler content.
Summary: A solid lubricant composite material was prepared by compression molding PTFE and acid treated nano‐attapulgite. The friction and wear tests were performed on a block‐on‐ring wear tester. Scanning electron microscopy (SEM), energy‐dispersive X‐ray spectrometer (EDS) and DSC were utilized to investigate material microstructures and examine modes of failure. Experimental results showed that there was no significant change in coefficient of friction, but the wear rate of the PTFE composite was orders of magnitude less than that of pure PTFE. Acid treated nano‐attapulgite was superior to untreated nano‐attapulgite in enhancing the wear resistance of PTFE. Moreover, the wear resistance of the composite increased monotonically with increasing treated attapulgite concentration. Investigation of transfer film and analysis of debris for PTFE and its composite showed that acid treated nano‐attapulgite filled to PTFE could facilitate formation of transfer film on the steel ring surface and inhibit breakage of PTFE molecular chain. The PTFE composite with higher heat absorption capacity exhibited improved wear resistance. Furthermore, the steel ring counterface abrasion was not found.Effect of load on the wear rate of PTFE and its composites.magnified imageEffect of load on the wear rate of PTFE and its composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.