FD is effective to up-regulate the level of retinal IGF-2 expression in guinea pig. Intravitreous injection with IGF-2 ASON can inhibit the development of myopia.
BackgroundBy investigating that (i) all-trans retinoic acid (ATRA) affects human retinal pigment epithelium (RPE) in expressing and secreting transforming growth factor (TGF)-β2 and (ii) U73122 (phospholipase C inhibitor) and SQ22536 (adenylyl cyclase inhibitor) regulate the ATRA-induced secretion of TGF-β2 in human RPE, we sought to interpret the signaling pathway of ATRA in promoting the development of myopia.MethodsThe RPE cell line (D407) was treated with (i) ATRA (10 μM), (ii) U73122 (5–40 μM) and ATRA (10 μM), or (iii) SQ22536 (5–40 μM) and ATRA (10 μM). The control group was no-treated. After stimulated at 2, 4, 8, 16, 24, and 48 h, The expression and secretion of TGF-β2 was detected.ResultsTGF-β2 in the cytoplasm was time-dependent increased by ATRA (p < 0.001). A time-dependent increase in the TGF-β2 protein of the supernatant was induced by ATRA (p < 0.001). U73122 (in the range of 5 to 40 μM) could suppress the secretion of TGF-β2 induced by ATRA (p < 0.001), and 40 μM U73122 could completely inhibit the up-regulated effect of 10 μM ATRA. However, SQ22536 (in the range of 5 to 40 μM) had no impact on the secretion of TGF-β2 induced by ATRA (p > 0.05).ConclusionsIn RPE cells, ATRA stimulates the secretion of TGF-β2 via the phospholipase C signaling pathway but not the adenylyl cyclase signaling pathway. U73122 may inhibit the promotion of ATRA in the development of myopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.