Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems.
Site-directed mutagenesis is routinely performed in protein engineering experiments. One method, termed Kunkel mutagenesis, is frequently used for constructing libraries of peptide or protein variants in M13 bacteriophage, followed by affinity selection of phage particles. To make this method more efficient, the following two modifications were introduced: culture was incubated at 25°C for phage replication, which yielded 2- to 7-fold more single-stranded DNA template compared to growth at 37°C, and restriction endonuclease recognition sites were used to remove non-recombinants. With both of the improvements, we could construct primary libraries of high complexity and that were 99-100% recombinant. Finally, with a third modification to the standard protocol of Kunkel mutagenesis, two secondary (mutagenic) libraries of a fibronectin type III (FN3) monobody were constructed with DNA segments that were amplified by error-prone and asymmetric PCR. Two advantages of this modification are that it bypasses the lengthy steps of restriction enzyme digestion and ligation, and that the pool of phage clones, recovered after affinity selection, can be used directly to generate a secondary library. Screening one of the two mutagenic libraries yielded variants that bound 2- to 4-fold tighter to human Pak1 kinase than the starting clone. The protocols described in this study should accelerate the discovery of phage-displayed recombinant affinity reagents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.