In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2∼50 w/m2, which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.
Context Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. Objective The purpose of this study was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. Methods The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Results Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within the urban area, the mean LST of urban impervious surfaces was about 6-12°C higher than that of the urban green space.LSTs of built-up areas were on average 3-6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Conclusions Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. To alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.Keywords Urban heat island Á Land surface temperature Á Urban landscape Á Land-use/land-cover Á MODIS Á Portable infrared thermometer
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.