A novel acrylamide/maleic acid copolymer [P(AM‐MA)] hydrogel nanofibrous membrane with a fiber diameter of ca. 120 nm is prepared by electrospinning an aqueous P(AM‐MA) solution with diethylene glycol as crosslinker, followed by a heat‐induced esterification crosslinking reaction at 145 °C. This hydrogel nanofiber can maintain a fiber form, but becomes distorted and merges to form many physical crosslinking points after immersion in water. The P(AM‐MA) hydrogel nanofibers are sensitive to external stimuli ionic strength and pH. Their water‐swelling ratio decreases with increasing solution ionic strength, and it shows a characteristic two‐step increase at pH = 2.5 and 8.5 in response to the increase of solution pH. The maximum water‐swelling ratios of the P(AM‐MA) hydrogel nanofibers are 18.1 and 22.5 g · g−1 in a solution of 0.05 mol · dm−3 ionic strength and in an aqueous solution of pH 11, respectively.magnified image
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.