Recent proton magnetic resonance (MR) spectroscopy studies have shown that cortical bone exists as different components which have distinct transverse relaxation times (T2s). However, cortical bone shows zero or near zero signal with all conventional MR sequences on clinical scanners and the different water components cannot be assessed with this approach. In order to detect signal in this situation a two-dimensional (2D) non-slice selective ultrashort echo time (UTE) pulse sequence with a nominal TE of 8 μs was used together with bi-component analysis to quantify bound and free water in bovine cortical bone at 3T. Total water concentration was quantified using a 3D UTE sequence together with a reference water phantom. 2D and 3D UTE imaging were performed on 14 bovine bone samples which were subjected to sequential air-drying to evaluate free water loss, followed by oven-drying to evaluate bound water loss. Sequential bone weight loss was measured concurrently using a precision balance. Bone porosity was measured with micro computed tomography (μCT) imaging. UTE measured free water loss was higher than the volume of cortical pores measured with μCT, but lower than the gravimetric bone water loss measured during air-drying. UTE assessed bound water loss was about 82% of gravimetric bone water loss during oven-drying. On average bovine cortical bone showed about 13% free water and 87% bound water. There was a high correlation (R = 0.91; P < 0.0001) between UTE MR measured free water loss and gravimetric bone weight loss during sequential air-drying, and a significant correlation (R = 0.69; P < 0.01) between UTE bound water loss and gravimetric bone weight loss during oven-drying. These results show that UTE bi-component analysis can reliably quantify bound and free water in cortical bone. The technique has potential applications for the in vivo evaluation of bone porosity and organic matrix.
No significant difference in single- or bi-component results was found after the application of tension to tendons. Results are similar regardless of UTE sequence used for acquisition.
Magnetization transfer (MT) imaging is one way to indirectly assess pools of protons with fast transverse relaxation. However, conventional MT imaging sequences are not applicable to short T2 tissues such as cortical bone. Ultrashort echo time (UTE) sequences with TEs as low as 8 μs can detect signals from different water components in cortical bone. In this study we aim to evaluate two-dimensional (2D) UTE-MT imaging of cortical bone and its application in assessing cortical bone porosity as measured by μCT and biomechanical properties. In total, 38 human cadaveric distal femur and proximal tibia bones were sectioned to produce 122 rectangular pieces of cortical bone for quantitative UTE-MT MR imaging, microcomputed tomography (μCT), and biomechanical testing. Off-resonance saturation ratios (OSR) with a series of MT pulse frequency offsets (Δf) were calculated and compared with porosity assessed with μCT, as well as elastic (modulus, yield stress, and strain) and failure (ultimate stress, failure strain, and energy) properties, using Pearson correlation and linear regression. A moderate strong negative correlation was observed between OSR and μCT porosity (R2 = 0.46–0.51), while a moderate positive correlation was observed between OSR and yield stress (R2 = 0.25–0.30) and failure stress (R2 = 0.31–0.35), and a weak positive correlation (R2 = 0.09–0.12) between OSR and Young’s modulus at all off-resonance saturation frequencies. OSR determined with the UTE-MT sequence provides quantitative information on cortical bone and is sensitive to μCT porosity and biomechanical function.
The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them “invisible” with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction.
Magnetic resonance (MR) imaging has been widely implemented as a non-invasive modality to investigate musculoskeletal (MSK) tissue disease, injury, and pathology. Advancements in MR sequences provide not only enhanced morphologic contrast for soft tissues, but also quantitative biochemical evaluation. Ultrashort time to echo (UTE) sequence, in particular, enables novel morphologic and quantitative evaluation of previously unseen MSK tissues. By using short minimum echo times (TE) below 1 msec, the UTE sequence can unveil short T2 properties of tissues including the deepest layers of the articular cartilage, cartilaginous endplate at the discovertebral junction, the meniscus, and the cortical bone. This article will discuss the application of UTE to evaluate these MSK tissues, starting with tissue structure, MR imaging appearance on standard versus short and ultrashort TE sequences, and provide the range of quantitative MR values found in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.