The rate of depression and anxiety is significantly higher in patients with PsA than in those with PsC. Depression and anxiety are associated with disease-related factors.
ObjectiveTo identify an immunologic basis for the male sex bias in ankylosing spondylitis (AS).MethodsCohorts of male and female patients with AS and age‐ and sex‐matched healthy control subjects were selected, and the levels of serum cytokines (interferon‐γ [IFNγ], tumor necrosis factor α, interleukin‐17A [IL‐17A], and IL‐6) were examined by enzyme‐linked immunosorbent assay, the frequencies of Th1 and Th17 cells were assessed by flow cytometry, and whole blood gene expression was analyzed using both microarray and NanoString approaches.ResultsThe frequency of IL‐17A and Th17 cells, both of which are key factors in the inflammatory Th17 axis, was elevated in male patients with AS but not in female patients with AS. In contrast, AS‐associated alterations in the Th1 axis, such as the frequency of IFNγ and Th1 cells in serum, were independent of a patient's sex. Results of microarray analysis supported an altered Th17 axis in male patients, with a specific increase in IL17RA. In addition, male and female patients with AS displayed shared gene expression patterns, while male patients with AS had additional alterations in gene expression that were not seen in female patients with AS. The differential sex‐related immune profiles were independent of HLA–B27 status, clinical disease activity (as measured by the Bath Ankylosing Spondylitis Disease Activity Index), or treatment (with nonsteroidal antiinflammatory drugs or biologic agents), implicating intrinsic sexual dimorphism in AS.ConclusionThe results of this study demonstrate distinct sexual dimorphism in the activation status of the immune system in patients with AS, particularly in the Th17 axis. This dimorphism could underlie sex‐related differences in the clinical features of AS and could provide a rationale for sex‐specific treatment of AS.
Patients with nr-axSpA were more likely to be female and to have lower inflammatory markers than patients with AS. When restricted to female patients only, acute-phase reactants did not differ significantly between AS and nr-axSpA. The evidence provides indirect support for the concept that nr-axSpA may represent an early form of AS, but that also has features of a distinct disease entity with significant burden of symptoms.
Efficient freezing, archiving, and thawing of sperm are essential techniques to support large scale research programs using mouse models of human disease. The purpose of this study was to investigate the effects of variable combinations and concentrations of cryoprotectants on sperm-assessment parameters of frozen-thawed mouse sperm in order to optimize cryopreservation protocols. Sperm was frozen using combinations of 3% skim milkC0.2 or 0.3 M nonpermeating raffinose with either permeating glucose, fructose, propylene glycol, ethylene glycol, glycerol, or sodium pyruvate in CD-1, C3FeB6F1/J, B6129SF1, C57BL/6NCrIBR, 129S/SvPaslco, and DBA/2NCrIBR mice. Sperm-assessment parameters included progressive motility, plasma membrane integrity (SYBR-14CPI), in vitro fertilization rate, and in vitro embryo development rate to blastocyst. DNA content analysis of sperm was measured by the sperm chromatin structure assay (SCSA). 0.3 M raffinose with 0.1 M fructose significantly improved post-thaw sperm-assessment parameters for CD-1, C3B6F1, B6129SF1 mice (P!0.05-0.01), whereas 0.2 M raffinose with 0.1 M glycerol or 0.1 M fructose enhanced sperm assessment values for C57BL/6 and 129S mice (P!0.01), compared to 0.3 M raffinose alone. DNA fragmentation during cryopreservation was significantly increased in all strains evaluated when compared with fresh control sperm in a strain-dependent manner (P!0.01). Supplementation with permeating glycerol or fructose to the cryoprotectant (CPA) solution showed a significant protective effect to DNA integrity when cryopreserving sperm from C57BL/6 and 129S mice. Damage to sperm DNA significantly decreased the rate of in vitro embryo development to blastocyst in C57BL/6 mice. The type of monosaccharide sugar or polyols, CPA molarity, and combination of permeating and nonpermeating cryoprotectant are significant factors for improving progressive motility, plasma membrane integrity, DNA integrity, in vitro fertilization rate, and in vitro embryo development rate to blastocyst in cryopreserved mouse sperm. Reproduction (2007) 133 585-595
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.