We present a method for estimating detailed scene illumination using human faces in a single image. In contrast to previous works that estimate lighting in terms of low-order basis functions or distant point lights, our technique estimates illumination at a higher precision in the form of a non-parametric environment map. Based on the observation that faces can exhibit strong highlight reflections from a broad range of lighting directions, we propose a deep neural network for extracting highlights from faces, and then trace these reflections back to the scene to acquire the environment map. Since real training data for highlight extraction is very limited, we introduce an unsupervised scheme for finetuning the network on real images, based on the consistent diffuse chromaticity of a given face seen in multiple real images. In tracing the estimated highlights to the environment, we reduce the blurring effect of skin reflectance on reflected light through a deconvolution determined by prior knowledge on face material properties. Comparisons to previous techniques for highlight extraction and illumination estimation show the state-of-the-art performance of this approach on a variety of indoor and outdoor scenes. Normalized RMSE Ours [10] [5] [20] [13]Mean (outdoor) 0.143 0.163 \ 0.154 0.245 Mean (indoor) 0.045 \ 0.050 0.083 0.286 Table 3. Errors in estimating environment maps from real data.
Figure 1: We develop GRASS, a Generative Recursive Autoencoder for Shape Structures, which enables structural blending between two 3D shapes. Note the discrete blending of translational symmetries (slats on the chair backs) and rotational symmetries (the swivel legs). GRASS encodes and synthesizes box structures (bottom) and part geometries (top) separately. The blending is performed on fixed-length codes learned by the unsupervised autoencoder, without any form of part correspondences, given or computed. AbstractWe introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.