Previous CNN-based video super-resolution approaches need to align multiple frames to the reference. In this paper, we show that proper frame alignment and motion compensation is crucial for achieving high quality results. We accordingly propose a "sub-pixel motion compensation" (SPMC) layer in a CNN framework. Analysis and experiments show the suitability of this layer in video SR. The final end-to-end, scalable CNN framework effectively incorporates the SPMC layer and fuses multiple frames to reveal image details. Our implementation can generate visually and quantitatively high-quality results, superior to current state-of-the-arts, without the need of parameter tuning.
In this paper, we propose a unified panoptic segmentation network (UPSNet) for tackling the newly proposed panoptic segmentation task. On top of a single backbone residual network, we first design a deformable convolution based semantic segmentation head and a Mask R-CNN style instance segmentation head which solve these two subtasks simultaneously. More importantly, we introduce a parameter-free panoptic head which solves the panoptic segmentation via pixel-wise classification. It first leverages the logits from the previous two heads and then innovatively expands the representation for enabling prediction of an extra unknown class which helps better resolve the conflicts between semantic and instance segmentation. Additionally, it handles the challenge caused by the varying number of instances and permits back propagation to the bottom modules in an end-to-end manner. Extensive experimental results on Cityscapes, COCO and our internal dataset demonstrate that our UPSNet achieves stateof-the-art performance with much faster inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.