Rationale: Ferroptosis is a regulated process of cell death caused by iron-dependent accumulation of lipid hydroperoxides (LPO). It is sensitive to epithelial-to-mesenchymal transition (EMT) cells, a well-known therapy-resistant state of cancer. Previous studies on nanomaterials did not investigate the immense value of ferroptosis therapy (FT) in epithelial cell carcinoma during EMT. Herein, we describe an EMT-specific nanodevice for a comprehensive FT strategy involving LPO burst.Methods: Mitochondrial membrane anchored oxidation/reduction response and Fenton-Reaction-Accelerable magnetic nanophotosensitizer complex self-assemblies loading sorafenib (CSO-SS-Cy7-Hex/SPION/Srfn) were constructed in this study for LPO produced to overcome the therapy-resistant state of cancer. Both in vitro and in vivo experiments were performed using breast cancer cells to investigate the anti-tumor efficacy of the complex self-assemblies.Results: The nano-device enriched the tumor sites by magnetic targeting of enhanced permeability and retention effects (EPR), which were disassembled by the redox response under high levels of ROS and GSH in FT cells. Superparamagnetic iron oxide nanoparticles (SPION) released Fe2+ and Fe3+ in the acidic environment of lysosomes, and the NIR photosensitizer Cy7-Hex anchored to the mitochondrial membrane, combined sorafenib (Srfn) leading to LPO burst, which was accumulated ~18-fold of treatment group in breast cancer cells. In vivo pharmacodynamic test results showed that this nanodevice with small particle size and high cytotoxicity increased Srfn circulation and shortened the period of epithelial cancer treatment.Conclusion: Ferroptosis therapy had a successful effect on EMT cells. These findings have great potential in the treatment of therapy-resistant epithelial cell carcinomas.
Photodynamic therapy (PDT), a clinically approved cancer treatment, has faced many drawbacks that restricted its applications. For example, the hypoxia-induced elevated hypoxia-inducible factor-1α (HIF-1α) may desensitize tumors to PDT, and the high concentration of glutathione (GSH) in cancer cells can also neutralize the generated reactive oxygen species (ROS) during PDT, resulting in insufficient therapy. Moreover, extra probes for imaging-guided visualization therapy are always needed to track drug release or distribution, while it may decrease the drug loading of the drug delivery system (DDS). In the present study, we have designed and prepared a novel multifunctional combined therapy nanoparticle (ZnPc@Cur-S-OA NPs), in which curcumin (Cur) was not only used as a chemotherapy drug to achieve a combination therapy with PDT via downregulating HIF-1α and depleting GSH in B16F10 cells but also designed as a small-molecule ROS-triggered release prodrug to deliver the photosensitizer (PS). The red fluorescence of PS in the nanoparticles (NPs) can be used to track the NPs distribution, while the green fluorescence of Cur showed an “OFF–ON” activation, which enables additional imaging and real-time self-monitoring capabilities. These results proved that the prepared combined therapy NPs were more effective to inhibit the growth of B16F10 mouse melanoma tumor than was monotherapy without eliciting systemic toxicity either in vitro or in vivo, which indicated the combined therapy NPs as an effective way to improve the PDT efficacy via downregulation of HIF-1α and depletion of GSH. Thus, the strategy of using a multifunctional natural product as the stimuli-responsive carrier as well as the synergist with PDT for enhancing antitumor efficacy via multiple pathways may open an alternative avenue to fabricate new self-delivery combination therapy nanodrugs. Besides, the fluorescence emitted from the drug can be used for real-time self-monitoring of drug release and distribution, which has great potential in clinic to adjust the administration dose and irradiation time for different tumor types and stages for individual therapy.
Photodynamic therapy relies on photosensitizers to generate cytotoxic reactive oxygen species (ROS) resulting in the apoptois of tumor cells. However, there is an antioxidant system that impedes the elevation of oxidation levels in tumor cells. Thus, photodynamic therapy may exhibit insufficient curative effects due to ungenerous reactive oxygen species levels. Herein, we describe tumor-specific activated photodynamic therapy using an oxidation-regulating strategy.Methods: We first synthesised a reactive oxygen species-sensitive amphipathic prodrug of gambogic acid-grafted hyaluronic acid (HA-GA). The hydrophobic photosensitizer chlorin e6 (Ce6) was then loaded into HA-GA by hydrophobic interactions between GA and Ce6, forming amphipathic nanomicelles (HA-GA@Ce6). The ROS-responsive behavior, cytotoxicity, cell uptake, tumor cell killing, in vivo biodistribution and in vivo anti-tumor efficacy of HA-GA@Ce6 were investigated. The in vitro and in vivo experiments were performed on 4T1 murine breast cancer cells and 4T1 tumor model.Results: We validated that the micelles of HA-GA@Ce6 showed stronger cell uptake in 4T1 tumor cells and lower cytotoxicity in normal cells compared with free Ce6 and GA, which exhibited the benefits of nanomicelles on enhancing the tumor cell acumulation and reducing the side effects on normal cells synchronously. Additionally, the cytotoxic free radicals of photodynamic therapy were generated after irradiation and the high oxidation levels activated the ROS-sensitive GA prodrug efficiently, which killed the tumor cells and depleted intracellular glutathione (GSH), thereby impairing antioxidant levels and enhancing photodynamic therapy.Conclusion: With the successfully eradicated tumor growth in vivo. Our work represents a new photodynamic therapy concept, achieving superior anti-tumor efficacy by reducing intracellular antioxidant levels.
Ferroptosis is an iron-dependent cell death caused by accumulation of lipid peroxidation (LPO), which is a new strategy for cancer treatment. Th current ferroptosis therapy nanodevices have low efficiency and side effects generally. Hence, we developed a Black Hole Quencher (BHQ)-based fluorescence “off–on” nanophotosensitizer complex assembly (CSO-BHQ-IR780-Hex/MIONPs/Sor). CSO-connected BHQ-IR780-Hex and -loaded magnetic iron oxide nanoparticles (MIONPs) and sorafenib (Sor) formed a very concise functionalized delivery system. CSO-BHQ-IR780-Hex disassembled by GSH attack and released IR780-Hex, MIONPs, and sorafenib. IR780-Hex anchored to the mitochondrial membrane, which would contribute to amplifying the efficiency of the photosensitizer. When NIR irradiation was given to CSO-BHQ-IR780-Hex/MIONPs/Sor-treated cells, iron supply increased, the xCT/GSH/GPX-4 system was triggered, and a lot of LPO burst. A malondialdehyde test showed that LPO in complex assembly-treated cells was explosive and increased about 18-fold compared to the control. The accumulation process of particles was monitored by an IR780-Hex photosensitizer, which showed an excellent tumor target ability by magnetic of nanodevice in vivo. Interestingly, the half-life of sorafenib in a nanodevice was increased about 26-fold compared to the control group. Importantly, the complex assembly effectively inhibits tumor growth in the breast tumor mouse model. This work would provide ideas in designing nanomedicines for the ferroptosis treatment of cancer.
Intelligent systems that offer traceable cancer therapy are highly desirable for precision medicine. Although photodynamic therapy (PDT) has been approved in the clinic for decades, determining where the tumor is, when to irradiate, and how long to expose to light still confuse the clinicians. Patients are always suffering from the phototoxicity of the photosensitizer in nonmalignant tissues. Herein, an activatable theranostic agent, ZnPc@TPCB nanoparticles (NPs), is prepared by doping a photosensitizer, ZnPc, with an aggregation-induced emission probe, TPCB. The assembled or disassembled ZnPc@TPCB NPs in various phases have behaved differently in fluorescence intensity, photoacoustic (PA) signals, and PDT efficiency. The intact nanoparticles are non-emissive in aqueous media while showing strong PA signals and low PDT efficiency, which can eliminate the phototoxicity and self-monitor their distribution and image the tumors' location. Disassembling of the NPs leads to the release of ZnPc and its red fluorescence turn-on to self-report the photosensitizer's activation. Upon light irradiation, the reactive oxygen species (ROS) generated by ZnPc can induce cell apoptosis and activate the ROS sensor, TPCB, which will yield intense orange-red fluorescence and instantly predict the therapeutic effect. Moreover, enhanced PDT efficacy is achieved via the GSH-depleting adjuvant quinone methide produced by the activated TPCB. The well-designed ZnPc@TPCB NPs have shown promising potential for finely controlled PDT with good biosafety and broad application prospects in individual therapy, which may inspire the development of precision medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.