Although many studies have confirmed that antimicrobial peptides (AMPs: PBD-mI and LUC-n) can be used as feed additives, there are few reports of their use in ruminants. The present study aimed to investigate the impact of AMPs on ameliorating rumen fermentation function and rumen microorganisms in goats. Eighteen 4-month-old Chuanzhong black goats were used in a 60-day experiment (6 goats per group). Group I was used as the control and was fed a basal diet, the group II were fed the basal diet supplemented with 2 g of AMPs [per goat/day] and group III were fed the basal diet supplemented 3 g of AMPs [per goat/day], respectively. Rumen fluid samples were collected at 0, 20 and 60 days. Bacterial 16S rRNA genes and ciliate protozoal 18S rRNA genes were amplified by PCR from DNA extracted from rumen samples. The amplicons were sequenced by Illumina MiSeq. Rumen fermentation parameters and digestive enzyme activities were also examined. Our results showed that dietary supplementation with AMPs increased the levels of the bacterial genera Fibrobacter , Anaerovibrio and Succiniclasticum and also increased the ciliates genus Ophryoscolex , but reduced the levels of the bacterial genera Selenomonas , Succinivibrio and Treponema , and the ciliate genera Polyplastron , Entodinium , Enoploplastron and Isotricha . Supplementation with AMPs increased the activities of xylanase, pectinase and lipase in the rumen, and also increased the concentrations of acetic acid, propionic acid and total volatile fatty acids. These changes were associated with improved growth performance in the goats. The results revealed that the goats fed AMPs showed improved rumen microbiota structures, altered ruminal fermentation, and improved efficiency regarding the utilization of feed; thereby indicating that AMPs can improve growth performance. AMPs are therefore suitable as feed additives in juvenile goats.
Due to the physiological characteristics of piglets, the morphological structure and function of the small intestinal mucosa change after weaning, which easily leads to diarrhea in piglets. The aim of this study was to investigate effects of crude protein (CP) levels on small intestinal morphology, occludin protein expression, and intestinal bacteria diversity in weaned piglets. Ninety‐six weaned piglets (25 days of age) were randomly divided into four groups and fed diets containing 18%, 20%, 22%, and 24% protein. At 6, 24, 48, 72, and 96 h, changes in mucosal morphological structure, occludin mRNA, and protein expression and in the localization of occludin in jejunal and ileal tissues were evaluated. At 6, 24, and 72 h, changes in bacterial diversity and number of the ileal and colonic contents were analyzed. Results showed that structures of the jejunum and the ileum of piglets in the 20% CP group were intact. The expression of occludin mRNA and protein in the small intestine of piglets in the 20% CP group were significantly higher than those in the other groups. As the CP level increased, the number of pathogens, such as Clostridium difficile and Escherichia coli, in the intestine increased, while the number of beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Roseburia, decreased. It is concluded that maintaining the CP level at 20% is beneficial to maintaining the small intestinal mucosal barrier and its absorption function, reducing the occurrence of diarrhea, and facilitating the growth and development of piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.