Many organs contain networks of epithelial tubes that transport gases or fluids. A lumen can be generated by tissue that enwraps a pre-existing extracellular space or it can arise de novo either between cells or within a single cell in a position where there was no space previously. Apparently distinct mechanisms of de novo lumen formation observed in vitro - in three-dimensional cultures of endothelial and Madin-Darby canine kidney (MDCK) cells - and in vivo - in zebrafish vasculature, Caenorhabditis elegans excretory cells and the Drosophila melanogaster trachea - in fact share many common features. In all systems, lumen formation involves the structured expansion of the apical plasma membrane through general mechanisms of vesicle transport and of microtubule and actin cytoskeleton regulation.
Apical membranes in many polarized epithelial cells show specialized morphological adaptations that fulfil distinct physiological functions. The air-transporting tubules of Drosophila tracheal terminal cells represent an extreme case of membrane specialization. Here we show that Bitesize (Btsz), a synaptotagmin-like protein family member, is needed for luminal membrane morphogenesis. Unlike in multicellular tubes and other epithelia, where it influences apical integrity by affecting adherens junctions, Btsz here acts at a distance from junctions. Localized at the luminal membrane through its tandem C2 domain, it recruits activated Moesin. Both proteins are needed for the integrity of the actin cytoskeleton at the luminal membrane, but not for other pools of F-actin in the cell, nor do actin-dependent processes at the outer membrane, such as filopodial activity or membrane growth depend on Btsz. Btsz and Moesin guide luminal membrane morphogenesis through organizing actin and allowing the incorporation of membrane containing the apical determinant Crumbs.
Pluripotent stem cells (PSCs) express telomerase and have unlimited proliferative potential. To study telomerase activation during reprogramming, 3 classes of embryonic stem cell (ESC)-like clones were isolated from mouse fibroblasts containing a transgenic hTERT reporter. Class I expressed few pluripotency markers, whereas class II contained many, but not Oct4, Nanog, and Sox2. Neither class of cells differentiated efficiently. Class III cells, the fully reprogrammed induced PSCs (iPSCs), expressed all pluripotency markers, formed teratomas indistinguishable from those of mESCs, and underwent efficient osteogenic differentiation in vitro. Interestingly, whereas the endogenous mTERT gene expression was only moderately increased during reprogramming, the hTERT promoter was strongly activated in class II cells and was further elevated in class III cells. Treatment of class II cells with chemical inhibitors of MEKs and glycogen synthase kinase 3 resulted in their further reprogramming into class III cells, accompanied by a strong activation of hTERT promoter. In reprogrammed human cells, the endogenous telomerase level, although variable among different clones, was dramatically elevated. Only in cells with the highest telomerase were telomeres restored to the lengths in hESCs. Our data, for the first time, demonstrated that the hTERT promoter was strongly activated in discrete steps, revealing a critical difference in human and mouse cell reprogramming. Because telomere elongation is crucial for self-renewal of hPSCs and replicative aging of their differentiated progeny, these findings have important implications in the generation and applications of iPSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.