A segregating population of F(1)-derived doubled haploid (DH) lines of Brassica oleracea was used to detect and locate QTLs controlling 27 morphological and developmental traits, including leaf, flowering, axillary bud and stem characters. The population resulted from a cross between two very different B. oleracea crop types, an annual cauliflower and a biennial Brussels sprout. A principal component analysis (PCA), based on line means, allowed all the traits to be grouped into distinct categories according to the first five Principal Components. These were: leaf traits (PC1), flowering traits (PC2), axillary bud traits (PC3 and 5) and stem traits (PC4). Between zero and four putative QTL were located per trait, which individually explained between 6% and 43% of the additive genetic variation, using the multiple-marker regression approach to QTL mapping. For lamina width, bare petiole length and stem length two QTL with opposite effects were detected on the same linkage groups. Intra- and inter-specific comparative mapping using RFLP markers identified a QTL on linkage group O8 accounting for variation in vernalisation, which is probably synonymous with a QTL detected on linkage group N19 of Brassica napus. In addition, a QTL for petiole length detected on O3 of this study appeared to be homologous to a QTL detected on another B. oleracea genetic map (Camargo et al. 1995).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.