Our results suggest the chronic health effects associated with within-city gradients in exposure to PM2.5 may be even larger than previously reported across metropolitan areas. We observed effects nearly 3 times greater than in models relying on comparisons between communities. We also found specificity in cause of death, with PM2.5 associated more strongly with ischemic heart disease than with cardiopulmonary or all-cause mortality.
We introduce a new class of generalized linear mixed models based on the Tweedie exponential dispersion model distributions, accommodating a wide range of discrete, continuous and mixed data. Using the best linear unbiased predictor of random effects, we obtain an optimal estimating function for the regression parameters in the sense of Godambe, allowing an efficient common fitting algorithm for the whole class. Although allowing full parametric inference, our main results depend only on the first- and second-moment assumptions of unobserved random effects. In addition, we obtain consistent estimators for both regression and dispersion parameters. We illustrate the method by analysing the epilepsy data and cake baking data. Along with simulations and asymptotic justifications, this shows the usefulness of the method for analysis of clustered non-normal data. Copyright 2007 Royal Statistical Society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.