Adropin is a secreted protein that regulates endothelial function. However, adropin levels in obese adolescent patients are currently uncertain. Therefore, we evaluated the association between plasma adropin levels and vascular endothelial function and investigated the effect of aerobic exercise in obese adolescents. A total of 45 obese adolescents and 20 controls (age 16–19 years) were included in our study. The obese adolescents received 12 weeks of aerobic exercise training. Serum adropin was detected using enzyme-linked immunosorbent assay. Vascular reactive hyperemia indexes (RHIs) were obtained using Endo-PAT2000. Adropin levels and RHI were significantly lower in obese adolescents than in normal-weight adolescents. Adropin levels and RHI increased significantly independently of changes in body weight after an exercise intervention (P < 0.01). Pearson correlation analysis revealed that adropin levels positively correlated with HDL-C levels (r = 0.389, P < 0.01) and RHI (r = 0.32, P < 0.01). Multiple linear stepwise regression analysis showed that the insulin resistance index (t = −3.301, P < 0.01) and HDL-C level (t = 2.620, P = 0.011) were independent risk factors of adropin levels. In addition, Δadropin (t = 3.261, P < 0.01) was an independent influencing factor of ΔRHI. Our findings suggest that adropin plays an important role in vascular endothelial function in obese adolescents.
Exercise plays a key role in preventing or treating mental or motor disorders caused by dysfunction of the serotonergic system. However, the electrophysiological and ionic channel mechanisms underlying these effects remain unclear. In this study, we investigated the effects of 3-week treadmill exercise on the electrophysiological and channel properties of dorsal raphe nucleus (DRN). Serotonin (5-HT) neurons in ePet-EYFP mice, using whole-cell patch clamp recording. Treadmill exercise was induced in ePet-EYFP mice of P21-24 for 3 weeks, and whole-cell patch clamp recording was performed on EYFP-positive 5-HT neurons from DRN slices of P42-45 mice. Experiment data showed that 5-HT neurons in the DRN were a heterogeneous population with multiple firing patterns (single firing, phasic firing, and tonic firing). Persistent inward currents (PICs) with multiple patterns were expressed in 5-HT neurons and composed of Cav1.3 (Ca-PIC) and sodium (Na-PIC) components. Exercise hyperpolarized the voltage threshold for action potential (AP) by 3.1 ± 1.0 mV (control: n = 14, exercise: n = 18, p = 0.005) and increased the AP amplitude by 6.7 ± 3.0 mV (p = 0.031) and firing frequency by more than 22% especially within a range of current stimulation stronger than 70 pA. A 3-week treadmill exercise was sufficient to hyperpolarize PIC onset by 2.6 ± 1.3 mV (control: −53.4 ± 4.7 mV, n = 28; exercise: −56.0 ± 4.7 mV, n = 25, p = 0.050) and increase the PIC amplitude by 28% (control: 193.6 ± 81.8 pA; exercise: 248.5 ± 105.4 pA, p = 0.038). Furthermore, exercise hyperpolarized Na-PIC onset by 3.8 ± 1.8 mV (control: n = 8, exercise: n = 9, p = 0.049) and increased the Ca-PIC amplitude by 23% (p = 0.013). The exercise-induced enhancement of the PIC amplitude was mainly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.