Abstract. A continuous adjoint solver is developed for calibration of the inlet velocity profile boundary condition (BC) for computational fluid dynamics (CFD) simulations of the neutral atmospheric boundary layer (ABL). The adjoint solver uses interior domain wind speed observations to compute the gradient of a calibration function with respect to inlet velocity speed and wind direction. The solver has been implemented in the open-source CFD package OpenFOAM coupled with the local gradient-based “CONMIN-frcg” solver of the DAKOTA optimization package. The feasibility of the optimizer output is continuously monitored during the calibration process. The inlet flow profile is considered acceptable only if it can be fitted to a logarithmic or power law function with a tolerance of 3 %. Otherwise, the optimization takes the last fitted profile and asks for a new gradient evaluation. The newly developed framework has been applied in two cases, namely the Ishihara case and Kassel domain. By using the measurements over the hill in the Ishihara case, the method was able to predict the velocity profiles upstream and downstream of the hill accurately. For the Kassel domain, despite the complexity of the site, the method managed to achieve the targeted profile within a reasonable number of the solver calls.
In wind energy site assessment, one major challenge is to represent both the local characteristics as well as general representation of the wind climate on site. Micro-scale models (e.g., Reynolds-Averaged-Navier-Stokes (RANS)) excel in the former, while meso-scale models (e.g., Weather Research and Forecasting (WRF)) in the latter. This paper presents a fast approach for meso–micro downscaling to an industry-applicable computational fluid dynamics (CFD) modeling framework. The model independent postprocessing tool chain is applied using the New European Wind Atlas (NEWA) on the meso-scale and THETA on the micro-scale side. We adapt on a previously developed methodology and extend it using a micro-scale model including stratification. We compare a single- and multi-point downscaling in critical flow situations and proof the concept on long-term mast data at Rödeser Berg in central Germany. In the longterm analysis, in respect to the pure meso-scale results, the statistical bias can be reduced up to 45% with a single-point downscaling and up to 107% (overcorrection of 7%) with a multi-point downscaling. We conclude that single-point downscaling is vital to combine meso-scale wind climate and micro-scale accuracy. The multi-point downscaling is further capable to include wind shear or veer from the meso-scale model into the downscaled velocity field. This adds both, accuracy and robustness, by minimal computational cost. The new introduction of stratification in the micro-scale model provides a marginal difference for the selected stability conditions, but gives a prospect on handling stratification in wind energy site assessment for future applications.
Abstract. A continuous adjoint solver is developed for optimization of the inlet velocity profile boundary condition for CFD simulations of the neutral atmospheric boundary layer (ABL). The adjoint solver uses interior domain wind speed observations to compute the gradient of a calibration function with respect to inlet velocity components and wind direction. The solver has been implemented in the open source CFD package OpenFOAM. The sensitivities computed by the newly developed adjoint solver are validated against the second order finite-difference method. Furthermore, the DAKOTA optimization package is coupled with OpenFOAM, and a number of numerical studies are carried out including the calibration of the inlet velocity profile of a 3-D complex domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.