The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd
To monitor and manage hydrological pollution effectively, tracing sources of pollutants is of great importance and also is in urgent need. A variety of tracers have been developed such as isotopes, silica, bromide, and dyes; however, practical limitations of these traditional tracers still exist such as lack of multiplexed, multipoint tracing and interference of background noise. To overcome these limitations, a new tracing system based on DNA nanomaterials, namely DNA tracer, has already been developed. DNA tracers possess remarkable advantages including sufficient species, specificity, environmental friendly, stable migration, and high sensitivity as well as allowing for multipoints tracing. In this review article, we introduce the molecular design, synthesis, protection and signal readout strategies of DNA tracers, compare the advantages and disadvantages of DNA tracer with traditional tracers, and summarize the-state-of-art applications in hydrological environment investigations. In the end, we provide our perspective on the future development of DNA tracers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.