Ethereum's Gas mechanism attempts to set transaction fees in accordance with the computational cost of transaction execution: a cost borne by default by every node on the network to ensure correct smart contract execution. Gas encourages users to author transactions that are efficient to execute and in so doing encourages node diversity, allowing modestly resourced nodes to join and contribute to the security of the network.However, the effectiveness of this scheme relies on Gas costs being correctly aligned with observed computational costs in reality. In this work, we performed the first large scale empirical study to understand to what degree this alignment exists in practice, by collecting and analyzing Tera-bytes worth of nanosecond-precision transaction execution traces. Besides confirming potential denial-of-service vectors, our results also shed light on the role of I/O in transaction costs which remains poorly captured by the current Gas cost model. Finally, our results suggest that under the current Gas cost model, nodes with modest computational resources are disadvantaged compared to their better resourced peers, which we identify as an ongoing threat to node diversity and network decentralization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.