Dynamic pricing has been used by Transportation Network Companies (TNCs) to achieve a balance between the volume of ride requests with numbers of available drivers on two-sided TNC markets. Given the desire to reduce operating costs and the emergence of Autonomous Vehicles (AVs), the introduction of TNC-owned AV fleets could convert such services into one-sided markets, where operators have full control of service supply. In this paper we investigate the impact of utility-based dynamic pricing for Autonomous TNCs (ATNCs) in one-sided markets. We test the method using an Agent-Based Model (ABM) of Greater London in conditions of monopoly and competition, focusing on a statically priced ATNC service that offers a mix of private and shared ride services. Public transport is considered as an alternative mode of transportation in both scenarios. Results indicate that in monopoly, dynamic pricing provides higher revenues than static pricing at non-peak hours when average waiting times are low. On the contrary, in competition, dynamic pricing is superior at peak hours where increased waiting times are observed, thus increasing the value of low waiting time rides. Overall, in both market structures, it is found that shared trips are more popular in dynamic pricing compared to static pricing.
Subtrochanteric fractures can result from high-energy trauma in young patients or from a fall or minor trauma in the elderly. Intramedullary nails are currently the most commonly used implants for the stabilization of these fractures. However, the anesthetic procedure for the patients, the surgical reduction and osteosynthesis for the fractures are challenging. The anesthetic management of orthopedic trauma patients should be based upon various parameters that must be evaluated before the implementation of any anesthetic technique. Surgery- and patient-related characteristics and possible comorbidities must be considered during the pre-anesthetic evaluation. Adequate fracture reduction and proper nail entry point are critical. Understanding of the deforming forces acting on various fracture patterns and knowledge of surgical reduction techniques are essential in obtaining successful outcomes. This article discusses the intraoperative reduction techniques for subtrochanteric fractures in adults and summarizes tips and tricks that the readers may find useful and educative.
Transportation Network Companies employ dynamic pricing methods at periods of peak travel to incentivise driver participation and balance supply and demand for rides. Surge pricing multipliers are commonly used and are applied following demand and estimates of customer and driver trip valuations. Combinatorial double auctions have been identified as a suitable alternative, as they can achieve maximum social welfare in the allocation by relying on customers and drivers stating their valuations. A shortcoming of current models, however, is that they fail to account for the effects of trip detours that take place in shared trips and their impact on the accuracy of pricing estimates. To resolve this, we formulate a new shared-ride assignment and pricing algorithm using combinatorial double auctions. We demonstrate that this model is reduced to a maximum weighted independent set model, which is known to be APX-hard. A fast local search heuristic is also presented, which is capable of producing results that lie within 10% of the exact approach for practical implementations. Our proposed algorithm could be used as a fast and reliable assignment and pricing mechanism of ride-sharing requests to vehicles during peak travel times.
The uptake of Electric Vehicles (EVs) is rapidly changing the landscape of urban mobility services. Transportation Network Companies (TNCs) have been following this trend by increasing the number of EVs in their fleets. Recently, major TNCs have explored the prospect of establishing privately owned charging facilities that will enable faster and more economic charging. Given the scale and complexity of TNC operations, such decisions need to consider both the requirements of TNCs and local planning regulations. Therefore, an optimisation approach is presented to model the placement of CSs with the objective of minimising the empty time travelled to the nearest CS for recharging as well as the installation cost. An agent based simulation model has been set in the area of Chicago to derive the recharging spots of the TNC vehicles, and in turn derive the charging demand. A mathematical formulation for the resulting optimisation problem is provided alongside a genetic algorithm that can produce solutions for large problem instances. Our results refer to a representative set of the total data for Chicago and indicate that nearly 180 CSs need to be installed to handle the demand of a TNC fleet of 3000 vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.