Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method.
A B S T R A C TBrain functional network has become an increasingly used approach in understanding brain functions and diseases. Many network construction methods have been developed, whereas the majority of the studies still used static pairwise Pearson's correlation-based functional connectivity. The goal of this work is to introduce a toolbox namely "Brain Network Construction and Classification" (Brain-NetClass) to the field to promote more advanced brain network construction methods. It comprises various brain network construction methods, including some state-of-the-art methods that were recently developed to capture more complex interactions among brain regions along with connectome feature extraction, reduction, parameter optimization towards network-based individualized classification. BrainNetClass is a MATLAB-based, open-source, cross-platform toolbox with graphical user-friendly interfaces for cognitive and clinical neuroscientists to perform rigorous computer-aided diagnosis with interpretable result presentations even though they do not possess neuroimage computing and machine learning knowledge. We demonstrate the implementations of this toolbox on real datasets. BrainNetClass (v1.0) can be downloaded from https://github.com/zzstefan/BrainNetClass.
Brain functional networks (BFNs) constructed from resting-state functional magnetic resonance imaging (rs-fMRI) have been widely applied to the analysis and diagnosis of brain diseases, such as Alzheimer's disease and its prodrome, namely mild cognitive impairment (MCI). Constructing a meaningful brain network based on, for example, sparse representation (SR) is the most essential step prior to the subsequent analysis or disease identification. However, the independent coding process of SR fails to capture the intrinsic locality and similarity characteristics in the data. To address this problem, we propose a novel weighted graph (Laplacian) regularized SR framework, based on which BFN can be optimized by considering both intrinsic correlation similarity and local manifold structure in the data, as well as sparsity prior of the brain connectivity. Additionally, the non-convergence of the graph Laplacian in the self-representation model has been solved properly. Combined with a pipeline of sparse feature selection and classification, the effectiveness of our proposed method is demonstrated by identifying MCI based on the constructed BFNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.