Rare earth (RE) addition can refine and change the shape/distribution of inclusions in steel to improve its strength and toughness. In this paper, the control of RE, specifically Ce and La, and their behaviors in the practical industrial production of high-strength structural steel with 420 MPa yield strength were studied. In particular, the interactions between RE and Al, Nb, S, O were investigated, with the aim of improving the steel toughness and welding performance. The impact energy of the plate with RE is approximately 50 J higher than the regular plate without RE. The toughness of the plate from ladle furnace (LF) refining with RE addition is better than the one from Ruhrstahl and Hereaeus (RH) refining. The RE inclusions could induce the intragranular ferrite and refine the grain size to the preferred size. After welding at the heat input of 200 kJ/cm, the grain size at the heat affected zone was found to be the finest in the plate from the LF process with RE addition. Notably, the microstructure of ferrite was quasi-polygonal.
Based on our innovative application of using thick continuous casting slab 0.4C1.5Mn2Cr0.35Mo1.5Ni (high alloy) for the production of high-quality mould steel, the present study investigated the high cracking susceptibility of high-alloy steel and segregation in continuous casting slab. The thermal expansion and the continuous cooling transformation (CCT) curve measurement, together with a high temperature in situ observation, confirmed the martensite phase transition happening at approximately 583 K that would result in an increase in the hardenability and cracking susceptibility. The cracking susceptibility zone was determined by high-temperature mechanical properties measurement. The high-alloy mould steel has no II brittle zone, and III brittle zone is 973–1148 K. As a conclusion, the straightening temperature should be above 1148 K to avoid the cracking during the continuous casting. Moreover, the elemental segregation of carbon, sulfur, chromium, and molybdenum along the cracking was examined by electron probe microanalysis (EPMA) quantitative analysis that might be another reason for the steel crack formation. It shows that Martensite phase transition happened at approximately 583 K that would result in an increase in the hardenability and cracking susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.