The wide spread of the 802.11-based wireless technology brings about a good opportunity for the indoor positioning system. In this paper, we present a new 802.11-based indoor positioning method using support vector regression (SVR), which consists of offline training stage and online location stage. The model that describes the relations between the position and the received signal strength (RSS) of the mobile device is established at the offline training stage by SVR, and at the online location stage the exact position is determined by this model. Due to the complex indoor environment, RSS is vulnerable and changeable. To address this issue, data filtering rules obtained through statistical analysis are applied at offline training stage to improve the quality of training samples and thus improve the quality of prediction model. At the online location stage,k-times continuous measurement is utilized to obtain the high quality RSS input, which guarantees the consistency with the training samples and improves the position accuracy of mobile devices. Performance evaluation shows that the proposed method has a higher positioning accuracy compared with the probability and neutral network method, and the demand for the storage capacity and computing power is also low at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.