This work proposes a numerical scheme for a class of time-fractional convection–reaction–diffusion problems with a time lag. Time-fractional derivative is considered in the Caputo sense. The numerical scheme comprises the discretization technique given by Crank and Nicolson in the temporal direction and the spline functions with a tension factor are used in the spatial direction. Through the von Neumann stability analysis, the scheme is shown conditionally stable. Moreover, a rigorous convergence analysis is presented through the Fourier series. Two test problems are solved numerically to verify the effectiveness of the proposed numerical scheme.
The generalized time‐fractional Fisher's equation is a substantial model for illustrating the system's dynamics. Studying effective numerical methods for this equation has considerable scientific importance and application value. In that direction, this paper presents designing and analyzing a high‐order numerical scheme for the generalized time‐fractional Fisher's equation. The time‐fractional derivative is taken in the Caputo sense and approximated using Euler backward discretization. The quasilinearization technique is used to linearize the problem, and then a compact finite difference scheme is considered for discretizing the equation in space direction. Our numerical method is convergent of
, where
and
are step sizes in spatial and temporal directions, respectively. Three problems are tested numerically by implementing the proposed technique, and the acquired results reveal that the proposed method is suitable for solving this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.