The auto focusing system, which involves moving a microscope stage along a vertical axis to find an optimal focus position, is the chief component of an automated digital microscope. Current automated focusing algorithms, especially those deployed in cost effective microscopy systems, often cannot match the efficiency of a skilled human operator in keeping a sample in focus. This work presents an auto focusing system that utilises the recent advances in machine learning, namely deep convolutional neural networks (CNN). It improves upon prior work in this domain. The results of the focusing algorithm are demonstrated on an open data set. We describe the practical implementation of this method on a low cost digital microscope to create a whole slide imaging system (WSI). Results of a clinical study using this WSI system are presented. The study demonstrates the efficacy of this system in a practical scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.