Objective: This study aimed to evaluate whether human chorionic gonadotropin (hCG) therapy is beneficial for improving semen parameters and clinical hypogonadism symptoms in hypogonadic oligozoospermic or severe oligozoospermic men with low or borderline testosterone levels. Methods: A weekly dose of 250 μg (equivalent to approximately 6,500 IU) of hCG was administered subcutaneously for 3–6 months to 56 hypogonadic oligozoospermic or severe oligozoospermic men. Semen, biochemical, and genetic analyses were performed before the start of treatment followed by analyzing semen parameters every 3 months after the start of therapy. We grouped participants into responders and non-responders depending on positive changes in semen parameters. Results: Out of 56 men, 47 (83.93%) responded, while 9 (16.07%) did not. Upon statistical analysis, it was found that age did not affect the overall outcomes (p=0.292); however, men with higher body mass index (BMI; 28.09±3.48 kg/m2) showed better outcomes than those with low BMI (25.33±3.06 kg/m2) (p=0.042). The duration of therapy (in months) was higher in non-responders than in responders (p=0.020). We found significant improvements in sperm concentration (p=0.006) and count (p=0.005) after 3 months of therapy. Conclusion: Sperm motility and progressive motility were also found to be higher in responders, but did not show statistically significant changes. We conclude that hCG therapy can be beneficial in men with hypogonadic oligozoospermia or severe oligozoospermia.
Background: Balance between endometrial cell proliferation and apoptosis is crucial for successful embryo implantation. PTEN (phosphatase and tensin homolog deleted on chromosome 10), a pro-apoptotic factor, is proposed to be one of the signaling proteins through which estrogen and progesterone act to affect cellular homeostasis. Although reports in literature have suggested role of PTEN in regulating endometrial cell proliferation and apoptosis during window of implantation, its involvement in women with unexplained infertility is not clear. In the present study, we examined expression, cellular distribution and activation status of PTEN, cell proliferation, and apoptosis in midsecretory endometrium from women with unexplained infertility as compared to fertile controls.Methods: Endometrial biopsies from infertile (n=11) and fertile women (n=22) were used for immunohistochemical evaluation of PTEN, phospho-PTEN and Ki67. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay was performed for detection of apoptotic cells.Results: Biopsies from infertile women as compared to fertile controls demonstrated statistically significant: i) decrease in nuclear PTEN (P < 0.001), increase in nuclear phospho-PTEN (P < 0.05), increase in nuclear and cytoplasmic phospho-PTEN/PTEN ratio (P < 0.001 and P < 0.05 respectively) in endometrial stroma, ii) increase in cytoplasmic phospho-PTEN (P < 0.001) and phospho-PTEN/PTEN ratio (P < 0.05) in glandular epithelium (GE), iii) increase in Ki67 labeling in GE (P < 0.01) and stroma (P < 0.05) and, iv) decrease in (P < 0.001) apoptosis.Conclusions: Altered PTEN expression and associated modulation in cellular homeostasis during the implantation window might contribute to mechanism underlying unexplained infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.