PurposeCurrently cardiovascular diseases (CVDs) are the main cause of death worldwide. Disease risk estimates can be used as prognostic information and support for treating CVDs. The commonly used Framingham risk score (FRS) for CVD prediction is outdated for the modern population, so FRS may not be accurate enough. In this paper, a novel CVD prediction system based on machine learning is proposed.MethodsThis study has been conducted with the data of 689 patients showing symptoms of CVD. Furthermore, the dataset of 5,209 CVD patients of the famous Framingham study has been used for validation purposes. Each patient’s parameters have been analyzed by physicians in order to make a diagnosis. The proposed system uses the quantum neural network for machine learning. This system learns and recognizes the pattern of CVD. The proposed system has been experimentally evaluated and compared with FRS.ResultsDuring testing, patients’ data in combination with the doctors’ diagnosis (predictions) are used for evaluation and validation. The proposed system achieved 98.57% accuracy in predicting the CVD risk. The CVD risk predictions by the proposed system, using the dataset of the Framingham study, confirmed the potential risk of death, deaths which actually occurred and had been recorded as due to myocardial infarction and coronary heart disease in the dataset of the Framingham study. The accuracy of the proposed system is significantly higher than FRS and other existing approaches.ConclusionThe proposed system will serve as an excellent tool for a medical practitioner in predicting the risk of CVD. This system will be serving as an aid to medical practitioners for planning better medication and treatment strategies. An early diagnosis may be effectively made by using this system. An overall accuracy of 98.57% has been achieved in predicting the risk level. The accuracy is considerably higher compared to the other existing approaches. Thus, this system must be used instead of the well-known FRS.
Aims: The diagnosis of Heart disease at earliest possible stage is very crucial to increase the chance of successful treatment and to reduce the mortality rate. The interpretation of cardiovascular disease is time-consuming and requires analysis by an expert physician. Thus there is a need of expert system which may provide quick and accurate prediction of Heart disease at early possible stage, without the help of physician. Place and Duration of Study: The study was carried out during 2010 to 2013 in the vicinity of Yamuna Nagar, Haryana, India. Methodology: The data used for this study consists of clinical values (Diabetes Mellitus, Low Density Lipoprotein, Triglycerides and High Density Lipoprotein) and has been collected from various Hospitals of 689 patients, who have symptoms of heart disease. All these cases are analyzed after careful scrutiny with the help of the Physicians. For training and evaluation purpose we have carefully predicted the level of heart disease by taking the help of Cardiologist/ Physician. The data consists of patients' record with doctor's predictions/ diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.