Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30-60%) (refs 1-3). Predisposing factors for ARDS are diverse and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus. At present, there are no effective drugs for improving the clinical outcome of ARDS. Angiotensin-converting enzyme (ACE) and ACE2 are homologues with different key functions in the renin-angiotensin system. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II and is a negative regulator of the system. ACE2 has also recently been identified as a potential SARS virus receptor and is expressed in lungs. Here we report that ACE2 and the angiotensin II type 2 receptor (AT2) protect mice from severe acute lung injury induced by acid aspiration or sepsis. However, other components of the renin-angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT1a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year.
Cardiovascular diseases are predicted to be the most common cause of death worldwide by 2020. Here we show that angiotensin-converting enzyme 2 (ace2) maps to a defined quantitative trait locus (QTL) on the X chromosome in three different rat models of hypertension. In all hypertensive rat strains, ACE2 messenger RNA and protein expression were markedly reduced, suggesting that ace2 is a candidate gene for this QTL. Targeted disruption of ACE2 in mice results in a severe cardiac contractility defect, increased angiotensin II levels, and upregulation of hypoxia-induced genes in the heart. Genetic ablation of ACE on an ACE2 mutant background completely rescues the cardiac phenotype. But disruption of ACER, a Drosophila ACE2 homologue, results in a severe defect of heart morphogenesis. These genetic data for ACE2 show that it is an essential regulator of heart function in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.