ABSTRACT5-Capping is an early mRNA modification that has important consequences for downstream events in gene expression. We have isolated mammalian cDNAs encoding capping enzyme. They contain the sequence motifs characteristic of the nucleotidyl transferase superfamily. The predicted mouse and human enzymes consist of 597 amino acids and are 95% identical. Mouse cDNA directed synthesis of a guanylylated 68-kDa polypeptide that also contained RNA 5-triphosphatase activity and catalyzed formation of RNA 5-terminal GpppG. A haploid strain of Saccharomyces cerevisiae lacking mRNA guanylyltransferase was complemented for growth by the mouse cDNA. Conversion of Lys-294 in the KXDG-conserved motif eliminated both guanylylation and complementation, identifying it as the active site. The K294A mutant retained RNA 5-triphosphatase activity, which was eliminated by N-terminal truncation. Full-length capping enzyme and an active C-terminal fragment bound to the elongating form and not to the initiating form of polymerase. The results document functional conservation of eukaryotic mRNA guanylyltransferases from yeast to mammals and indicate that the phosphorylated C-terminal domain of RNA polymerase II couples capping to transcription elongation. These results also explain the selective capping of RNA polymerase II transcripts.Addition of a 5Ј-terminal cap is an important, early event in mRNA formation (1). This structural hallmark of most eukaryotic mRNAs enhances splicing (2-4), transport (5), translation (6), and stability (7,8) and is essential for viability (9).Caps are formed on nascent nuclear pre-mRNAs by conversion of 5Ј-tri-diphosphate to 5Ј-diphosphate ends, followed by addition of GMP and methylation (1, 10). The guanylyltransfer reaction characterized in various systems involves formation of an active enzyme intermediate containing GMP covalently attached to lysine (11). In yeast, mRNA capping enzyme consists of separate subunits for RNA 5Ј-triphosphatase and guanylyltransferase activities (9, 12). cDNA clones coding for mRNA guanylyltransferase in Saccharomyces cerevisiae (9), Schizosaccharomyces pombe (13), and Candida albicans (14) have been sequenced. Each contains the active site lysine in KXDG (13, 15), one of several highly conserved motifs characteristic of a superfamily of nucleotidyl transferases (16). A number of viral capping enzymes also contain these diagnostic sequence motifs, and the recently solved structure of capping enzyme from Chlorella virus PBCV-1 suggests that specific residues in these motifs are important for binding GTP (17). Despite this detail of sequence and structure information, no metazoan capping enzyme previously has been cloned and characterized.To explore the molecular interactions that result in selective capping of RNA polymerase II (pol II) transcripts in mammalian cells, we have isolated and characterized cDNA clones that code for the human and mouse capping enzymes. Functional studies demonstrated that the mammalian enzyme complements the lethality of a S. cerevisiae mu...
Insulin is thought to elicit its effects by crosslinking the two extracellular ␣-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases.I nsulin is one of the most studied peptide hormones because of its importance in maintaining glucose homeostasis. This 51-aa hormone is very well characterized with regard to its structure, both in crystal form and in solution. The insulin receptor (IR) is a transmembrane ␣ 2  2 glycoprotein whose intracellular tyrosine kinase domain is activated by binding of insulin, leading to a cascade of intracellular signaling events. The kinase domain of the IR (1) and an extracellular fragment of the related receptor for insulin-like growth factor I (IGF-IR; ref. 2) have been crystallized, but the structure of the insulin binding domain of the IR is not known, and the mechanism for the transmission of a signal through its transmembrane domain is not well understood. A model for the binding and activation has been proposed in which insulin uses two different sites on its surface to crosslink the two ␣-subunits of the IR, thus inducing a conformational change that activates the receptor (refs. 3 and 4; Fig. 1).In a previous report (5), we panned random, highly diverse peptide display libraries against the IR. By using this approach, we identified a large number of peptides binding to the IR and competing for insulin binding with micromolar or submicromolar affinity, although these peptides had no sequence homology with insulin. These peptides bound to two discrete hotspots on the receptor (designated site 1 and site 2), and these hotspots appeared to correspond to the two contact sites involved in insulin binding predicted by the crosslinking model (ref. 3 and J.B., unpublished results). At least two different sequence motifs were found for site 1 peptides, and some of these were full agonists but of low affinity. Other site 1 peptides were antagonists, whereas site 2 peptides were either antagonists or inactive. The mechanism behind the agonism of the site 1 peptides is not known, but it has been speculated that site 1 binding may be important for receptor activation, whereas the role of the site 2 interaction may be more related to affinity and selectivity. In addition to these two families of peptides, a third group was identified, but no further work has been done on this group. In the present work, we have used site 1 and site 2 peptides as building blocks ...
A novel methodology of in-sample calibration curves (ISCC) using multiple isotopologue reaction monitoring (MIRM) of multiple naturally occurring isotopologue transitions of a stable isotopically labeled (SIL) analyte for instant liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalysis of biomarkers, biotherapeutics, and small-molecule compounds is proposed and demonstrated for the first time. The theoretical isotopic abundances of the SIL analyte in its MIRM channels can be accurately calculated based on the isotopic distributions of its daughter ion and neutral loss. The isotopic abundances in these MIRM channels can also be accurately measured with a triple quadrupole mass spectrometer. By spiking a known amount of a SIL analyte into each study sample, an ISCC can be established based on the relationship between the calculated theoretical isotopic abundances (analyte concentration equivalents) in the selected MIRM channels of the SIL analyte and the measured MS/MS peak areas in the corresponding MIRM channels in each individual study sample. The analyte concentration of each study sample can then be calculated individually with the ISCC instantly without using an external calibration curve. The MIRM− ISCC−LC-MS/MS methodology was evaluated and demonstrated in this work with the examples of quantitation of a protein biomarker in human and monkey serum processed with immunocapture and trypsin digestion; three surrogate peptides in trypsin-digested human colon tissue homogenates; and a small-molecule drug in human and rat plasma extracted with liquid− liquid extraction. The potential applications of the MIRM−ISCC−LC-MS/MS methodology in quantitative proteomics, clinical laboratories, and other areas are also discussed in this paper. Without the need for using external calibration curves, this novel MIRM−ISCC−LC-MS/MS methodology can provide accurate and reliable bioanalysis in many potential applications, especially for cases where authentic matrices for external calibration curves are not available.
We used phage display to generate surrogate peptides that define the hotspots involved in protein-protein interaction between insulin and the insulin receptor. All of the peptides competed for insulin binding and had affinity constants in the high nanomolar to low micromolar range. Based on competition studies, peptides were grouped into non-overlapping Sites 1, 2, or 3. Some Site 1 peptides were able to activate the tyrosine kinase activity of the insulin receptor and act as agonists in the insulin-dependent fat cell assay, suggesting that Site 1 marks the hotspot involved in insulin-induced activation of the insulin receptor. On the other hand, Site 2 and 3 peptides were found to act as antagonists in the phosphorylation and fat cell assays. These data show that a peptide display can be used to define the molecular architecture of a receptor and to identify the critical regions required for biological activity in a site-directed manner.
The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5 day, week-long event - A Full Immersion Bioanalytical Week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS and LBA approaches, including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 3 discusses the recommendations for large molecule bioanalysis using LBA, biomarkers and immunogenicity. Part 1 (small molecule bioanalysis using LCMS) and Part 2 (hybrid LBA/LCMS and regulatory inputs from major global health authorities) have been published in volume 7, issues 22 and 23 of Bioanalysis, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.