pH-responsive smart gating membranes were developed using a two-step fabricating process. In the first step, a porous polyimide (PI) support membrane with ordered, regular, and welldefined pores was obtained with a 248 nm KrF excimer laser using a lithography technique. The porous membranes were then grafted with poly(acrylic acid) (PAAc) hydrogel by free radical polymerization using the same excimer laser. The number of pulses and frequency could be varied to obtain a range of water permeabilities. Permeability of membrane changed significantly due to swelling and deswelling of PAAc inside the pores at pH 7 and pH 3, respectively. These hydrogel networks were firmly grafted inside pores and remained mechanically intact even after using high pressure during permeability studies. PAAc grafting was confirmed using ATR-FTIR. PAAc hydrogel distribution inside membrane pores was analyzed using SEM and fluorescence microscopy. To quantify the amount of polymer grafted, TGA studies were carried out. Diffusion studies were also carried out using caffeine as a drug molecule to evaluate the application of membrane in drug delivery devices. The linear drug release profile obtained from the study confirmed the potential application of membrane for drug delivery purposes. Results obtained also suggest that the fabrication method developed is fast, efficient, solvent-free, and economical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.