Automatic building extraction from satellite images, an open research topic in remote sensing, continues to represent a challenge and has received substantial attention for decades. This paper presents an object-based and machine learning-based approach for automatic house detection from RGB high-resolution images. The images are first segmented by an algorithm combing a thresholding watershed transformation and hierarchical merging, and then shadows and vegetation are eliminated from the initial segmented regions to generate building candidates. Subsequently, the candidate regions are subjected to feature extraction to generate training data. In order to capture the characteristics of house regions well, we propose two kinds of new features, namely edge regularity indices (ERI) and shadow line indices (SLI). Finally, three classifiers, namely AdaBoost, random forests, and Support Vector Machine (SVM), are employed to identify houses from test images and quality assessments are conducted. The experiments show that our method is effective and applicable for house identification. The proposed ERI and SLI features can improve the precision and recall by 5.6% and 11.2%, respectively.
With the recent development of earth observation technology, the satellites have obtained the ability to capture city-scale videos, which enable potential applications in intelligent traffic management. Because of the broad field-of-view, the moving vehicles in satellite videos are usually composed of only tens of pixels, making it difficult to differentiate true objects from noise and other distractors. In addition, the edges of tall building tops are often mistakenly detected as moving vehicles because of the effects of motion parallax. This paper proposed a terse framework that can effectively suppress false targets, achieving high precision and recall. The study involves three parts: 1) An adaptive filtering method is proposed to reduce noise, thus making the detection algorithm more reliable; 2) Several background subtraction models are tested, and the best one is chosen to produce the preliminary detection results at high recall but low accuracy; 3) A lightweight convolutional neural network (LCNN) is designed and trained on a small collection of samples, and then used to eliminate false targets. The experiments and evaluations demonstrate that our method can largely improve the precision at the expense of a slight reduction of recall. INDEX TERMS vehicle detection, object detection, convolutional neural network, background subtraction model, satellite video
MODIS time series data have been widely used in the research of regional and global ecosystems and climate change. For vegetation monitoring, vegetation indices such as NDVI (normalized difference vegetation index), EVI (enhanced vegetation index) and NBR (normalized burn ratio), are usually derived from MODIS reflectance data. However, noise usually makes it difficult to generate reliable time series of vegetation indices. Although some methods have been developed for reconstructing NDVI time series data, they still suffer from some limitations. First, there is no reliable approach for detecting and dealing with low-quality data, resulting in poor outcomes. Second, no effective evaluation of the fidelity of the corrected data to the original data has been discussed. For these reasons, we developed a new time series reconstruction approach, named Fixing Invalid Value (FIV) method. The proposed method assumes that the noise in surface reflectance data stems from invalid data, such as clouds, ice, and missing values. The FIV method first uses the spatially and temporally neighboring pixels to estimate the invalid values and then applies morphology operations to remove the residual noise. Finally, the Savitzky-Golay (S-G) filter is employed to generate the final results. The FIV method is tested on 8-day composite MODIS surface reflectance time series data from 2001 to 2012 in Jiangxi and Fujian provinces, China. The results show that the FIV method outperforms the conventional S-G filter and the HANTS method both in terms of visual inspection and quantitative evaluation. Furthermore, the fidelity evaluation reveals that the proposed FIV method produces high-quality time series data under all weather conditions. INDEX TERMS Time series reconstruction, removal of noise, Savitzky-Golay filtering, NDVI, MODIS.
DEM data is an important component of spatial database in GIS. The data volume is so huge that compression is necessary. Wavelet transform has many advantages and has become a trend in data compression. Considering the simplicity and high efficiency of the compression system, integer wavelet transform is applied to DEM and a simple coding algorithm with high efficiency is introduced. Experiments on a variety of DEM are carried out and some useful rules are presented at the end of this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.