Hereditary cholestasis in childhood and infancy with normal serum gamma‐glutamyltransferase (GGT) activity is linked to several genes. Many patients, however, remain genetically undiagnosed. Defects in myosin VB (MYO5B; encoded by MYO5B) cause microvillus inclusion disease (MVID; MIM251850) with recurrent watery diarrhea. Cholestasis, reported as an atypical presentation in MVID, has been considered a side effect of parenteral alimentation. Here, however, we report on 10 patients who experienced cholestasis associated with biallelic, or suspected biallelic, mutations in MYO5B and who had neither recurrent diarrhea nor received parenteral alimentation. Seven of them are from two study cohorts, together comprising 31 undiagnosed low‐GGT cholestasis patients; 3 are sporadic. Cholestasis in 2 patients was progressive, in 3 recurrent, in 2 transient, and in 3 uncategorized because of insufficient follow‐up. Liver biopsy specimens revealed giant‐cell change of hepatocytes and intralobular cholestasis with abnormal distribution of bile salt export pump (BSEP) at canaliculi, as well as coarse granular dislocation of MYO5B. Mass spectrometry of plasma demonstrated increased total bile acids, primary bile acids, and conjugated bile acids, with decreased free bile acids, similar to changes in BSEP‐deficient patients. Literature review revealed that patients with biallelic mutations predicted to eliminate MYO5B expression were more frequent in typical MVID than in isolated‐cholestasis patients (11 of 38 vs. 0 of 13). Conclusion: MYO5B deficiency may underlie 20% of previously undiagnosed low‐GGT cholestasis. MYO5B deficiency appears to impair targeting of BSEP to the canalicular membrane with hampered bile acid excretion, resulting in a spectrum of cholestasis without diarrhea. (Hepatology 2017;65:1655‐1669).
Multidrug resistance protein 3 (MRP3) is an ATP-binding cassette transporter that is able to confer resistance to anticancer agents such as etoposide and to transport lipophilic anions such as bile acids and glucuronides. These capabilities, along with the induction of the MRP3 protein on hepatocyte sinusoidal membranes in cholestasis and the expression of MRP3 in enterocytes, have led to the hypotheses that MRP3 may function in the body to protect normal tissues from etoposide, to protect cholestatic hepatocytes from endobiotics, and to facilitate bile-acid reclamation from the gut. To elucidate the role of Mrp3 in these processes, the Mrp3 gene (Abcc3) was disrupted by homologous recombination. Homozygous null animals were healthy and physically indistinguishable from wild-type mice. Mrp3Ϫ/Ϫ mice did not exhibit enhanced lethality to etoposide phosphate, although an analysis of transfected human embryonic kidney 293 cells indicated that the potency of murine Mrp3 toward etoposide (ϳ2.0-to 2.5-fold) is comparable with that of human MRP3. After induction of cholestasis by bile duct ligation, Mrp3 Ϫ/Ϫ mice had 1.5-fold higher levels of liver bile acids and 3.1-fold lower levels of serum bilirubin glucuronide compared with ligated wild-type mice, whereas significant differences were not observed between the respective sham-operated mice. Bile acid excretion, pool size, and fractional turnover rates were similar in Mrp3 Ϫ/Ϫ and wild-type mice. We conclude that Mrp3 functions as an alternative route for the export of bile acids and glucuronides from cholestatic hepatocytes, that the pump does not play a major role in the enterohepatic circulation of bile acids and that the lack of chemosensitivity is probably attributable to functional redundancy with other pumps.
To obtain a more comprehensive profile of bile acids (BAs) in blood, we developed an ultrahigh performance liquid chromatography/multiple-reaction monitoring-mass spectrometry (UPLC-MRM-MS) method for the separation and detection of 50 known BAs. This method utilizes phospholipid-depletion solid-phase extraction as a new high-efficiency sample preparation procedure for BA assay. UPLC/scheduled MRM-MS with negative ion electrospray ionization enabled targeted quantitation of 43 and 44 BAs, respectively, in serum samples from seven individuals with and without fasting, as well as in plasma samples from six cholestatic gene knockout mice and six age- and gender-matched wild-type (FVB/NJ) animals. Many minor BAs were identified and quantitated in the blood for the first time. Method validation indicated good quantitation precision with intraday and interday relative standard deviations of ≤9.3% and ≤10.8%, respectively. Using a pooled human serum sample and a pooled mouse plasma sample as the two representative test samples, the quantitation accuracy was measured to be 80% to 120% for most of the BAs, using two standard-substance spiking approaches. To profile other potential BAs not included in the 50 known targets from the knockout versus wild-type mouse plasma, class-specific precursor/fragment ion transitions were used to perform UPLC-MRM-MS for untargeted detection of the structural isomers of glycine- and taurine-conjugated BAs and unconjugated tetra-hydroxy BAs. As a result, as many as 36 such compounds were detected. In summary, this UPLC-MRM-MS method has enabled the quantitation of the largest number of BAs in the blood thus far, and the results presented have revealed an unexpectedly complex BA profile in mouse plasma.
In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.
Bile salt export pump (BSEP; ATP-binding cassette, subfamily B, member 11) mutations in humans result in progressive familial intrahepatic cholestasis type 2, a fatal liver disease with greatly reduced bile flow. However in mice, Bsep knockout leads only to mild cholestasis with substantial bile flow and up-regulated P-glycoprotein genes (multidrug resistance protein 1a [Mdr1a] and Mdr1b). To determine whether P-glycoprotein is responsible for the relatively mild phenotype observed in Bsep knockout mice, we have crossed mouse strains knocked out for Bsep and the two P-glycoprotein genes and generated a triple knockout mouse. We found that a knockout of the three genes leads to a significantly more severe phenotype with impaired bile formation, jaundice, flaccid gallbladder, and increased mortality. The triple knockout mouse is the most severe genetic model of intrahepatic cholestasis yet developed. Conclusion: P-glycoprotein functions as a critical compensatory mechanism, which reduces the severity of cholestasis in Bsep knockout mice. (HEPATOLOGY 2009;50: 948-956.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.