The movement of metal particles is effectively inhibited when a DC GIL’s (gas-insulated transmission line) electrode is coated. This article aims to study the problem of coating falling off during GIL operation and the change in the particle-inhibitory effect after coating ageing. A closed constant temperature heating platform and a particle motion observation platform in an SF6 atmosphere were built. The epoxy resin coating was aged for 1200 h in an SF6 atmosphere at 160 °C. Pull-off and particle-lifting experiments were carried out for the samples. The experimental results show that the adhesion of the coating changes from rapid decline to slow decline, decreasing by 35.5%. The lifting voltage of particle startup gradually decreased, and the inhibition effect on particle activity decreased from 45.89% to 35.7%. The coating mass loss rate and surface morphology were tested to explain adhesion decline. Then, the dielectric constant, electrical conductivity and adhesion work between the coating and the particles, which are the key factors affecting the lifting of the particles, were measured. Compared with the adhesion work, the dielectric constant of the coating has a greater impact on the starting voltage. The dielectric constant of the coating decreases by 24.07%, and the conductivity increases, which weakens its inhibition of particles. After ageing, due to the decrease in the dielectric constant and the increase in the conductivity of the coating, the inhibition of coating on particles is weakened. This paper reveals the changes in coating adhesion reliability and particle inhibition in DC GIL, providing guidance for using and improving the performance of coatings in practical engineering.
This study aimed to explore the clinical value of miR-92b in advanced oral squamous cell carcinoma (OSCC) and to observe the relationship between miR-92b and TPF induced chemotherapy and prognosis. Totally 114 patients with advanced OSCC admitted to our hospital were selected as the study subjects, all of whom received docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy. In addition, another 80 healthy subjects who underwent physical examination in our hospital from the same period were enrolled. The serum expression of miR-92b was detected by qRT-PCR. Serum miR-92b was up-regulated in patients with advanced OSCC, and its expression was associated with higher TNM staging and lymph node metastasis. The receiver operating characteristic (ROC) curve revealed that the area under the curve (AUC) of serum miR-92b for the diagnosis of advanced OSCC was 0.931. After treatment, the miR-92b expression was significantly reduced, and the ROC curve showed an AUC value of 0.889 for predicting treatment sensitivity of serum miR-92b. What's more, Logistic indicated that TNM staging, lymph node metastasis and serum miR-92b expression were independent risk factors affecting the treatment efficacy. Survival analysis demonstrated that OSCC patients with high miR-92b expression had poorer OS and DFS compared to patients with low miR-92b expression. Multivariate Cox regression exhibited that TNM staging, lymph node metastasis, and serum miR-92b expression were self-regulating risk factors for overall survival (OS) and disease-free survival (DFS) in patients with advanced OSCC. MiR-92b is up-regulated in patients with advanced OSCC, which can be used as a marker for induction chemotherapy and prognosis evaluation of advanced OSCC.
Polyimide, which is widely used to insulate power equipment operating in a vacuum environment, is prone to insulation failure due to surface flashover. Using POSS to modify it is an effective solution. This paper focuses on the study of DC surface flashover characteristics in vacuum of POSS/polyimide composite film, by introducing 1%, 3%, 5% equivalent mole content of POSS into polyimide, and conducting a surface flashover characteristics test in vacuum together with pure polyimide. The physical and chemical properties of the composite films were tested utilizing Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy. Combined with resistivity, SEM, and other test techniques, the influence mechanism of POSS molecular modification on DC surface flashover characteristics of polyimide films in vacuum was initially revealed. The results showed that after the introduction of POSS, the overall functional group structure of polyimide remained unchanged, the intermolecular charge transfer complexation was inhibited, and the transmittance of the film increased. The thermal conductivity and thermogravimetric temperature of the film are improved to a certain extent, and the mechanical properties are slightly decreased. With the increase of the introduced POSS content, the dielectric strength of the composite film is also enhanced. The surface flashover voltage of the composite film with a POSS content of 5% is 17.5 kV in vacuum, which is 30.5% higher than that of the pure film. Further analysis shows that the introduction of POSS will reduce the resistivity of the composite film, accelerate the dissipation of surface charges, and increase the flashover voltage. In addition, POSS forms a uniformly distributed Si-O-Si cage-like structure through molecular modification. When the surface of the film is damaged, SiOx inorganic flocculent particles are generated, which can not only scatter electrons, but also shallow the depth of trap energy level and accelerate the dissipation rate of surface charge, thus increasing the flashover voltage.
Insulation failure usually occurs in AC gas-insulated transmission (AC GIL) in field operation, in which the primary cause is the charged motion of metal particles in the electric filed. At present, the particle inhibition method applied is to design particle traps on the inner wall of the GIL shell. However, due to the large randomness of the charged motion for metallic particles and the limitations of field test methods, a particle trap has not yet been designed from the perspective of particle trapping effectiveness. In this paper, firstly, referring to the size of a running 252 kV AC GIL, a 1:1 scaled 3-D similarity simulation model is established to obtain the dynamic characteristics of particles with different sizes under the operating voltage level. This model can form symmetry between the real equipment, and its simulated simulation trajectory can achieve symmetry with the actual one. Secondly, an experimental platform that can easily capture the motion of the particles is set up to experimentally verify the symmetry between the field operating equipment and the simulation model. Finally, the particle traps are set on both sides of the concave and convex surface of the basin insulator, and an optimization scheme for the design of the particle trap is proposed from three aspects: the electric field regulation of the trap, the captured probability of particles, and the trap location. The proposed research shows that, with respect to the motion characteristics of the particles, this paper selects circular hole-shaped trap and its thickness, slot spacing, and slot width are 10 mm, 6 mm, and 8 mm, respectively. When the traps are arranged, one at the bottom of the shell at 70 mm and 80 mm from each side of the concave and convex insulator, the capture probability of the traps on both sides can be as high as 78% and 70%, respectively. Therefore, the analysis and optimization method in this paper has important reference value according to similarity concepts for optimizing particle traps in AC GIL at a certain voltage level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.