Applications of quantum walks can depend on the number, exchange symmetry and indistinguishability of the particles involved, and the underlying graph structures where they move. Here, we show that silicon photonics, by exploiting an entanglement-driven scheme, can realize quantum walks with full control over all these properties in one device. The device we realize implements entangled two-photon quantum walks on any five-vertex graph, with continuously tunable particle exchange symmetry and indistinguishability. We show how this simulates single-particle walks on larger graphs, with size and geometry controlled by tuning the properties of the composite quantum walkers. We apply the device to quantum walk algorithms for searching vertices in graphs and testing for graph isomorphisms. In doing so, we implement up to 100 sampled time steps of quantum walk evolution on each of 292 different graphs. This opens the way to large-scale, programmable quantum walk processors for classically intractable applications.
Thin-film lithium-niobate-on-insulator (LNOI) is a very attractive
platform for optical interconnect and nonlinear optics. It is
essential to enable lithium niobate photonic integrated circuits with
low power consumption. Here we present an edge-coupling Mach–Zehnder
modulator on the platform with low fiber-chip coupling loss of
0.5 dB/facet, half-wave voltage
V
π
of 2.36 V, electro-optic (EO)
bandwidth of 60 GHz and an efficient thermal-optic phase shifter with
half-wave power of 6.24 mW. In addition, we experimentally demonstrate
single-lane 200 Gbit/s data transmission utilizing a discrete
multi-tone signal. The LNOI modulator demonstrated here shows great
potential in energy-efficient large-capacity optical
interconnects.
We experimentally demonstrate a high-spectral-purity photon source by designing a dual-Mach–Zehnder-interferometer-coupled silicon ring resonator, wherein the linewidths of pump and signal (idler) resonances can be engineered independently. A high spectral purity of
95
%
±
1.5
%
is obtained via a time-integrated
g
(
2
)
correlation measurement, which exceeds the theoretical 93% bound of a traditional ring’s spontaneous four-wave-mixing photon source. This source also possesses high performance in other metrics including a measured coincidence of 9599 pairs/s and a preparation heralding efficiency of 52.4% at a relatively low pump power of 61 µW as well as high drop-to-through suppression of 20.2 dB. By overcoming the trade-off between spectral purity and brightness in the post-filtering way, such a method guarantees bright pure photons and will pave the way for development of on-chip quantum information processing with improved operation fidelity and efficiency.
Multi-photon interference in large multi-port interferometers is key to linear optical quantum computing and in particular to boson sampling. Silicon photonics enables complex interferometric circuits with many components in a small footprint and has the potential to extend these experiments to larger numbers of interfering modes. However, loss has generally limited the implementation of multi-photon experiments in this platform. Here, we make use of high-efficiency grating couplers to combine bright and pure quantum light sources based on ppKTP waveguides with silicon circuits. We interfere up to 5 photons in up to 15 modes, verifying genuine multi-photon interference by comparing the results against various models including partial distinguishability between photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.