Large-scale IoT services such as healthcare, smart cities and marine monitoring are pervasive in Cyber-physical environments strongly supported by Internet technologies and Fog computing. Complex IoT services are increasingly composed of sensors, devices, and compute resources within Fog computing infrastructures. The orchestration of such applications can be leveraged to alleviate the difficulties of maintenance and enhance data security and system reliability. However, how to efficiently deal with dynamic variations and transient operational behavior is a crucial challenge within the context of choreographing complex services. Furthermore, with the rapid increase of the scale of IoT deployments, the heterogeneity, dynamicity, and uncertainty within Fog environments and increased computational complexity further dramatically aggravate this challenge. This article provides an overview of the core issues, challenges and future research directions in Fog-enabled orchestration for IoT services. Additionally, we present early experiences of an orchestration scenario, demonstrating the feasibility and initial results of using a distributed genetic algorithm in this context.
CNNs, RNNs, GCNs, and CapsNets have shown significant insights in representation learning and are widely used in various text mining tasks such as large-scale multi-label text classification. However, most existing deep models for multi-label text classification consider either the non-consecutive and long-distance semantics or the sequential semantics, but how to consider them both coherently is less studied. In addition, most existing methods treat output labels as independent medoids, but ignore the hierarchical relations among them, leading to useful semantic information loss. In this paper, we propose a novel hierarchical taxonomy-aware and attentional graph capsule recurrent CNNs framework for large-scale multi-label text classification. Specifically, we first propose to model each document as a word order preserved graph-of-words and normalize it as a corresponding words-matrix representation which preserves both the non-consecutive, long-distance and local sequential semantics. Then the words-matrix is input to the proposed attentional graph capsule recurrent CNNs for more effectively learning the semantic features. To leverage the hierarchical relations among the class labels, we propose a hierarchical taxonomy embedding method to learn their representations, and define a novel weighted margin loss by incorporating the label representation similarity. Extensive evaluations on three datasets show that our model significantly improves the performance of large-scale multi-label text classification by comparing with state-of-the-art approaches.
Abstract-Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena substantially affecting overall system performance. This phenomena is known as "Long Tail", whereby a small proportion of task stragglers significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with 95% accuracy for short duration jobs.
Text classification is the most fundamental and essential task in natural language processing. The last decade has seen a surge of research in this area due to the unprecedented success of deep learning. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This paper fills the gap by reviewing the state-of-the-art approaches from 1961 to 2021, focusing on models from traditional models to deep learning. We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification. We then discuss each of these categories in detail, dealing with both the technical developments and benchmark datasets that support tests of predictions. A comprehensive comparison between different techniques, as well as identifying the pros and cons of various evaluation metrics are also provided in this survey. Finally, we conclude by summarizing key implications, future research directions, and the challenges facing the research area.
Text classification is the most fundamental and essential task in natural language processing. The last decade has seen a surge of research in this area due to the unprecedented success of deep learning. Numerous methods, datasets, and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This paper fills the gap by reviewing the state of the art approaches from 1961 to 2020, focusing on models from shallow to deep learning. We create a taxonomy for text classification according to the text involved and the models used for feature extraction and classification. We then discuss each of these categories in detail, dealing with both the technical developments and benchmark datasets that support tests of predictions. A comprehensive comparison between different techniques, as well as identifying the pros and cons of various evaluation metrics are also provided in this survey. Finally, we conclude by summarizing key implications, future research directions, and the challenges facing the research area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.