Background Ancient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their correlation with tea-leaves chemical components remained unclear. Tea-leaves chemical components including free amino acids, phenolic compounds and purine alkaloids collected from modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC), while their soil microbial community structure was analyzed by high-throughput sequencing, respectively. Additionally, soil microbial quantity and chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK) were determined in modern and ancient tea plantations. Results Tea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. Ancient tea plantations were observed to possess significantly (P < 0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P < 0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way might significantly (P < 0.05) improve the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. Conclusions Due to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and soil microbial ecosystem, which contributed to the sustainable development of tea-leaves with higher quality.
BackgroundAncient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their impact on tea-leaves chemical components remained unclear. Tea-leaves chemical components including amino acids, phenolic compounds and purine alkaloids, and soil chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK), and microbial community structure of modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC) and high-throughput sequencing, respectively. ResultsTea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. The ancient tea plantations possessed significantly (P<0.05) higher free amino acids, gallic acid, caffeine and EGC in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P<0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way significantly (P<0.05) improved the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. ConclusionsDue to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and complete soil microbial ecosystem, which contributed to the sustainable development with higher quality in tea-leaves.
BackgroundAncient tea plantations with an age over 100 years still reserved at Mengku Town in Lincang Region of Yunan Province, China. However, the characteristic of soil chemicophysical properties and microbial ecosystem in the ancient tea plantations and their impact on tea-leaves chemical components remained unclear. Tea-leaves chemical components including amino acids, phenolic compounds and purine alkaloids, and soil chemicophysical properties including pH, cation exchange capacity (CEC), soil organic matter (SOM), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorous (AP) and available potassium (AK), and microbial community structure of modern and ancient tea plantations in five geographic sites (i.e. Bingdao, Baqishan, Banuo, Dongguo and Jiulong) were determined by high performance liquid chromatography (HPLC) and high-throughput sequencing, respectively. ResultsTea-leaves chemical components, soil chemicophysical properties and microbial community structures including bacterial and fungal community abundance and diversity evaluated by Chao 1 and Shannon varied with geographic location and tea plantation type. The ancient tea plantations possessed significantly (P<0.05) higher free amino acids, gallic acid, caffeine and epigallocatechin (EGC) in tea-leaves, as well as soil fertility. The bacterial community structure kept stable, while fungal community abundance and diversity significantly (P<0.05) increased in ancient tea plantation because of higher soil fertility and lower pH. The long-term plantation in natural cultivation way significantly (P<0.05) improved the abundances of Nitrospirota, Methylomirabilota, Ascomycota and Mortierellomycota phyla. ConclusionsDue to the natural cultivation way, the ancient tea plantations still maintained relatively higher soil fertility and complete soil microbial ecosystem, which contributed to the sustainable development with higher quality in tea-leaves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.