Abstract-Convolutional Neural Networks (CNNs) have revolutionized the world of computer vision over the last few years, pushing image classification beyond human accuracy. The computational effort of today's CNNs requires power-hungry parallel processors or GP-GPUs. Recent developments in CNN accelerators for system-on-chip integration have reduced energy consumption significantly. Unfortunately, even these highly optimized devices are above the power envelope imposed by mobile and deeply embedded applications and face hard limitations caused by CNN weight I/O and storage. This prevents the adoption of CNNs in future ultra-low power Internet of Things end-nodes for near-sensor analytics. Recent algorithmic and theoretical advancements enable competitive classification accuracy even when limiting CNNs to binary (+1/-1) weights during training. These new findings bring major optimization opportunities in the arithmetic core by removing the need for expensive multiplications, as well as reducing I/O bandwidth and storage. In this work, we present an accelerator optimized for binary-weight CNNs that achieves 1.5 TOp/s at 1.2 V on a core area of only 1.33 MGE (Million Gate Equivalent) or 1.9 mm 2 and with a power dissipation of 895 µW in UMC 65 nm technology at 0.6 V. Our accelerator significantly outperforms the state-of-the-art in terms of energy and area efficiency achieving 61.2 TOp/s/W@0.6 V and 1.1 TOp/s/MGE@1.2 V, respectively.
Stretchable large‐area high‐performance amorphous oxide thin‐film electronics fabricated using locally reinforced composite elastomers or wavy structures are functional while elongated by >200% and after 4000 stretching and relaxation cycles. 2D stretchable sensors, amplifiers, and circuits for wireless power transmission are conformably wrapped around arbitrary 3D structures and enable sensor systems for electronic implants and skins.
Convolutional Neural Networks (CNNs) have revolutionized the world of image classification over the last few years, pushing the computer vision close beyond human accuracy. The required computational effort of CNNs today requires powerhungry parallel processors and GP-GPUs. Recent efforts in designing CNN Application-Specific Integrated Circuits (ASICs) and accelerators for System-On-Chip (SoC) integration have achieved very promising results. Unfortunately, even these highly optimized engines are still above the power envelope imposed by mobile and deeply embedded applications and face hard limitations caused by CNN weight I/O and storage. On the algorithmic side, highly competitive classification accuracy can be achieved by properly training CNNs with binary weights. This novel algorithm approach brings major optimization opportunities in the arithmetic core by removing the need for the expensive multiplications as well as in the weight storage and I/O costs. In this work, we present a HW accelerator optimized for BinaryConnect CNNs that achieves 1510 GOp/s on a core area of only 1.33 MGE and with a power dissipation of 153 mW in UMC 65 nm technology at 1.2 V. Our accelerator outperforms state-of-the-art performance in terms of ASIC energy efficiency as well as area efficiency with 61.2 TOp/s/W and 1135 GOp/s/MGE, respectively.
Sound event detection (SED) is a hot topic in consumer and smart city applications. Existing approaches based on deep neural networks (DNNs) are very effective, but highly demanding in terms of memory, power, and throughput when targeting ultra-low power always-on devices.Latency, availability, cost, and privacy requirements are pushing recent IoT systems to process the data on the node, close to the sensor, with a very limited energy supply, and tight constraints on the memory size and processing capabilities precluding to run state-of-the-art DNNs.In this paper, we explore the combination of extreme quantization to a small-footprint binary neural network (BNN) with the highly energy-efficient, RISC-V-based (8+1)-core GAP8 microcontroller. Starting from an existing CNN for SED whose footprint (815 kB) exceeds the 512 kB of memory available on our platform, we retrain the network using binary filters and activations to match these memory constraints. (Fully) binary neural networks come with a natural drop in accuracy of 12-18% on the challenging Ima-geNet object recognition challenge compared to their equivalent full-precision baselines. This BNN reaches a 77.9% accuracy, just 7% lower than the full-precision version, with 58 kB (7.2× less) for the weights and 262 kB (2.4× less) memory in total. With our BNN implementation, we reach a peak throughput of 4.6 GMAC/s and 1.5 GMAC/s over the full network, including preprocessing with Mel bins, which corresponds to an efficiency of 67.1 GMAC/s/W and 31.3 GMAC/s/W, respectively. Compared to the performance of an ARM Cortex-M4 implementation, our system has a 10.3× faster execution time and a 51.1× higher energy-efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.