Graph database models can be defined as those in which data structures for the schema and instances are modeled as graphs or generalizations of them, and data manipulation is expressed by graph-oriented operations and type constructors. These models took off in the eighties and early nineties alongside object-oriented models. Their influence gradually died out with the emergence of other database models, in particular geographical, spatial, semistructured, and XML. Recently, the need to manage information with graph-like nature has reestablished the relevance of this area. The main objective of this survey is to present the work that has been conducted in the area of graph database modeling, concentrating on data structures, query languages, and integrity constraints
We survey foundational features underlying modern graph query languages. We first discuss two popular graph data models: edge-labelled graphs, where nodes are connected by directed, labelled edges; and property graphs, where nodes and edges can further have attributes. Next we discuss the two most fundamental graph querying functionalities: graph patterns and navigational expressions. We start with graph patterns, in which a graph-structured query is matched against the data. Thereafter we discuss navigational expressions, in which patterns can be matched recursively against the graph to navigate paths of arbitrary length; we give an overview of what kinds of expressions have been proposed, and how they can be combined with graph patterns. We also discuss several semantics under which queries using the previous features can be evaluated, what effects the selection of features and semantics has on complexity, and offer examples of such features in three modern languages that are used to query graphs: SPARQL, Cypher and Gremlin. We conclude by discussing the importance of formalisation for graph query languages; a summary of what is known about SPARQL, Cypher and Gremlin in terms of expressivity and complexity; and an outline of possible future directions for the area.
Abstract. This paper studies the expressive power of SPARQL. The main result is that SPARQL and non-recursive safe Datalog with negation have equivalent expressive power, and hence, by classical results, SPARQL is equivalent from an expressive point of view to Relational Algebra. We present explicit generic rules of the transformations in both directions. Among other findings of the paper are the proof that negation can be simulated in SPARQL, that non-safe filters are superfluous, and that current SPARQL W3C semantics can be simplified to a standard compositional one.
Abstract. This paper studies the RDF model from a database perspective. From this point of view it is compared with other database models, particularly with graph database models, which are very close in motivations and use cases to RDF. We concentrate on query languages, analyze current RDF trends, and propose the incorporation to RDF query languages of primitives which are not present today, based on the experience and techniques of graph database research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.