Background Sexual reproduction provides an evolutionary advantageous mechanism that combines favorable mutations that have arisen in separate lineages into the same individual. This advantage is especially pronounced in microparasites as allelic reassortment among individuals caused by sexual reproduction promotes allelic diversity at immune evasion genes within individuals which is often essential to evade host immune systems. Despite these advantages, many eukaryotic microparasites exhibit highly-clonal population structures suggesting that genetic exchange through sexual reproduction is rare. Evidence supporting clonality is particularly convincing in the causative agent of Chagas disease, Trypanosoma cruzi , despite equally convincing evidence of the capacity to engage in sexual reproduction. Methodology/ Principle Findings In the present study, we investigated two hypotheses that can reconcile the apparent contradiction between the observed clonal population structure and the capacity to engage in sexual reproduction by analyzing the genome sequences of 123 T . cruzi isolates from a natural population in Arequipa, Peru. The distribution of polymorphic markers within and among isolates provides clear evidence of the occurrence of sexual reproduction. Large genetic segments are rearranged among chromosomes due to crossing over during meiosis leading to a decay in the genetic linkage among polymorphic markers compared to the expectations from a purely asexually-reproducing population. Nevertheless, the population structure appears clonal due to a high level of inbreeding during sexual reproduction which increases homozygosity, and thus reduces diversity, within each inbreeding lineage. Conclusions/ Significance These results effectively reconcile the apparent contradiction by demonstrating that the clonal population structure is derived not from infrequent sex in natural populations but from high levels of inbreeding. We discuss epidemiological consequences of this reproductive strategy on genome evolution, population structure, and phenotypic diversity of this medically important parasite.
Blastocystis is one of the most common protozoa found in the human gut and are genetically diverse and widely distributed around the world. Nonspecific and inconsistent symptoms have been associated with this protozoon; thus, its clinical importance remains controversial. Our aim was to estimate the relative frequency of Blastocystis subtypes 1, 2, and 3, which are the predominant subtypes reported in South America, based on conserved regions of SSU rDNA sequences and determine the factors associated with them. A total of 116 Blastocystis-positive stool samples were processed using conventional PCR with Blastocystis-specific primers. We identified subtype 1 (10.3%), subtype 2 (7.8%), subtype 3 (25.0%), and mixed subtype infections (8.7%). However, we could not identify any Blastocystis subtypes in 48.3% of the samples; therefore, it is likely that other subtypes were present in the area. No association was found between any gastrointestinal symptom and single or mixed Blastocystis subtypes. We found a statistically significant association between Blastocystis subtype 2 and irritable bowel syndrome (OR = 17.8, 95% CI = 1.5–408.4, p = 0.039); however, the number of samples with IBS was small (n= 4). There was no association between the Blastocystis subtypes and any epidemiological variable studied. In rural populations, we only identified subtype 1, while in urban and periurban populations, we identified subtypes 1, 2, and 3.
Changing environmental conditions, including those caused by human activities, reshape biological communities through both loss of native species and establishment of non-native species in the altered habitats. Dynamic interactions with the abiotic environment impact both immigration and initial establishment of non-native species into these altered habitats. The repeated emergence of disease systems in urban areas worldwide highlights the importance of understanding how dynamic migratory processes affect the current and future distribution and abundance of pathogens in urban environments. In this study, we examine the pattern of invasion of Trypanosoma cruzi —the causative agent of human Chagas disease—in the city of Arequipa, Peru. Phylogenetic analyses of 136 T . cruzi isolates from Arequipa and other South American locations suggest that only one T . cruzi lineage established a population in Arequipa as all T . cruzi isolated from vectors in Arequipa form a recent monophyletic group within the broader South American phylogeny. We discuss several hypotheses that may explain the limited number of established T . cruzi lineages despite multiple introductions of the parasite.
BackgroundSalivary proteins of Triatoma infestans elicit humoral immune responses in their vertebrate hosts. These immune responses indicate exposure to triatomines and thus can be a useful epidemiological tool to estimate triatomine infestation. In the present study, we analyzed antibody responses of guinea pigs to salivary antigens of different developmental stages of four T. infestans strains originating from domestic and/or peridomestic habitats in Argentina, Bolivia, Chile and Peru. We aimed to identify developmental stage- and strain-specific salivary antigens as potential markers of T. infestans exposure.Methodology and Principal FindingsIn SDS-PAGE analysis of salivary proteins of T. infestans the banding pattern differed between developmental stages and strains of triatomines. Phenograms constructed from the salivary profiles separated nymphal instars, especially the 5th instar, from adults. To analyze the influence of stage- and strain-specific differences in T. infestans saliva on the antibody response of guinea pigs, twenty-one guinea pigs were exposed to 5th instar nymphs and/or adults of different T. infestans strains. Western blot analyses using sera of exposed guinea pigs revealed stage- and strain-specific variations in the humoral response of animals. In total, 27 and 17 different salivary proteins reacted with guinea pig sera using IgG and IgM antibodies, respectively. Despite all variations of recognized salivary antigens, an antigen of 35 kDa reacted with sera of almost all challenged guinea pigs.ConclusionSalivary antigens are increasingly considered as an epidemiological tool to measure exposure to hematophagous arthropods, but developmental stage- and strain-specific variations in the saliva composition and the respective differences of immunogenicity are often neglected. Thus, the development of a triatomine exposure marker for surveillance studies after triatomine control campaigns requires detailed investigations. Our study resulted in the identification of a potential antigen as useful marker of T. infestans exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.