Metastatic cancers produce exosomes that condition pre-metastatic niches in remote microenvironments to favor metastasis. In contrast, here we show that exosomes from poorly metastatic melanoma cells can potently inhibit metastasis to the lung. These “non-metastatic” exosomes stimulate an innate immune response through the expansion of Ly6Clow patrolling monocytes (PMo) in the bone marrow, which then cause cancer cell clearance at the pre-metastatic niche, via the recruitment of NK cells and TRAIL-dependent killing of melanoma cells by macrophages. These events require the induction of the Nr4a1 transcription factor and are dependent on pigment epithelium-derived factor (PEDF) on the outer surface of exosomes. Importantly, exosomes isolated from patients with non-metastatic primary melanomas have a similar ability to suppress lung metastasis. This study thus demonstrates that pre-metastatic tumors produce exosomes, which elicit a broad range of PMo-reliant innate immune responses via trigger(s) of immune surveillance, causing cancer cell clearance at the pre-metastatic niche.
The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2−/− are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2+/− mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.
Many tumor cells produce nitric oxide (NO) as an anti-apoptotic/pro-growth molecule which also promotes antiogenesis and tumor expansion. This study was designed to examine possible antagonistic effects of endogenous NO on tumor eradication by photodynamic therapy (PDT). Using COH-BR1 breast cancer cells sensitized in mitochondria with 5-aminolevulinic acid (ALA)-generated protoporphyrin IX as a model for ALA-based PDT, we found that caspase-9 activation and apoptotic death following irradiation were strongly enhanced by 1400W, an inhibitor of inducible nitric oxide synthase (iNOS). RT-PCR and Western analyses revealed a substantial upregulation of both iNOS mRNA and protein, beginning ~4 h after irradiation and persisting at least 20 h. Accompanying this was a strong 1400W-inhibitable increase in intracellular NO, as detected with the NO probe, DAF-2-DA. Short hairpin RNA-based iNOS knockdown in COH-BR1 cells dramatically reduced NO production under photostress while enhancing caspase-9 activation and apoptosis. These findings suggest that cytoprotective iNOS/NO induction in PDT-treated tumor cells could reduce treatment efficacy, and point to pharmacologic intervention with iNOS inhibitors for counteracting this.
Photodynamic therapy (PDT) employs photoexcitation of a sensitizer to generate tumor-eradicating reactive oxygen species. We recently showed that irradiating breast cancer COH-BR1 cells after treating with 5-aminolevulinic acid (ALA, a pro-sensitizer) resulted in rapid upregulation of inducible nitric oxide (NO) synthase (iNOS). Apoptotic cell killing was strongly enhanced by an iNOS inhibitor (1400W), iNOS knockdown (kd), or a NO scavenger, suggesting that NO was acting cytoprotectively. Stress signaling associated with these effects was examined in this study. ALA/light-stressed COH-BR1 cells, and also breast adenocarcinoma MDA-MB-231 cells, mounted an iNOS/NO-dependent resistance to apoptosis that proved to be cGMP-independent. Immunocytochemistry and subcellular Western analysis of photostressed COH-BR1 cells revealed a cytosol-to-nucleus translocation of NF-κB which was negated by the NF-κB activation inhibitor Bay11. Bay11 also enhanced apoptosis and prevented iNOS induction, consistent with NF-κB involvement in the latter. JNK and p38 MAP kinase inhibitors suppressed apoptosis, implicating these kinases in death signaling. Post-irradiation extent and duration of JNK and p38 phosphorylation were dramatically elevated by 1400W or iNOS-kd, suggesting that these activations were suppressed by NO. Regarding pro-survival stress signaling, rapid activation of Akt was unaffected by 1400W, but prevented by Wortmannin, which also enhanced apoptosis. Thus, a link between upstream Akt activation and iNOS induction was apparent. Furthermore, p53 protein expression under photostress was elevated by iNOS-kd, whereas robust Survivin induction was abolished, consistent with p53 and Survivin being negatively and positively regulated by NO, respectively. Collectively, these findings enhance our understanding of cytoprotective signaling associated with photostress-induced NO and suggest iNOS inhibitor-based approaches for improving PDT efficacy.
Photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to generate reactive species that kill tumor and tumor vasculature cells. Nitric oxide produced by these cells could be pro-carcinogenic by inhibiting apoptosis or promoting angiogenesis and tumor growth. The purpose of this study was to determine whether tumor cells upregulate NO as a cytoprotective measure during PDT. Breast tumor COH-BR1 cells sensitized in mitochondria with 5-aminolevulinic acid (ALA)-derived protoporphyrin IX died apoptotically following irradiation, ALA- and light-only controls showing no effect. Western analysis revealed that inducible nitric oxide synthase (iNOS) was upregulated >3-fold within 4 h after ALA/light treatment, while other NOS isoforms were unaffected. Exposing cells to a NOS inhibitor (L-NAME or 1400W) during photochallenge enhanced caspase-3/7 activation and apoptotic killing up to 2–3-fold while substantially reducing chemiluminescence-assessed NO production, suggesting that this NO was cytoprotective. Consistently, the NO scavenger cPTIO enhanced ALA/light-induced caspase-3/7 activation and apoptotic kill by >2.5-fold. Of added significance, cells could be rescued from 1400W-exacerbated apoptosis by an exogenous NO donor, spermine-NONOate. This is the first reported evidence for increased tumor cell resistance due to iNOS upregulation in a PDT model. Our findings indicate that stress-elicited NO in PDT-treated tumors could compromise therapeutic efficacy, and suggest NOS-based pharmacologic interventions for preventing this.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.