Harmful pollutants like phenol and its derivatives are found in wastewater from a wide range of industries, including oil refining, medicines, coal conversion, chemistry, and petrochemistry. The high concentration, high toxicity, and difficult-to-degrade characteristics of phenols in wastewater pose a serious threat to the environment and to human health. By employing different strains of microorganisms and biocatalysts to create biodegradation procedures of diverse pollutants and a wide spectrum of hazardous compounds, biotechnology has successfully addressed significant environmental challenges. Among various phenols removal techniques, biodegradation is both economical and environmentally friendly. During the study of microbial degradation processes, there is a great deal of interest in the potential for mathematical modelling to forecast microbial growth and degrade harmful or inhibiting environmental pollutants at variable quantities. Such mathematical models are frequently created using aromatic compounds like phenol. The review discusses the following topics: kinetics, modelling, and mass transfer; future scope and directions; diverse microorganisms, bioreactors, the metabolic pathway of phenol, influencing factors, and recent advancements in biological therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.