This paper discusses the efficient implementation of a new hybrid approach to forecasting short-term PV power production for four different PV plants in Algeria. The developed model incorporates a time-varying filter-empirical mode decomposition (TVF-EMD) and an extreme learning machine (ELM) as an essence regression. The TVF-EMD technique is used to deal with the fluctuation of PV power data by splitting it into a series of more stable and constant subseries. The specified set of features (intrinsic mode functions (IMFs)) is utilized for training and improving our forecasting extreme learning machine model. The adjusted ELM model is used to evaluate prediction efficiency. The suggested TVF-EMD-ELM model is assessed and verified in various Algerian locations with varying climate conditions. In all examined regions, the TVF-EMD-ELM model generates less than 4% error in terms of normalized root mean square error (nRMSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.