This study looked at the variation in air quality during the periods of fireworks as assessed from the change in ambient concentrations of air pollutants like particulate matter (PM10), O3, and NO2 for pre-, post-, and Vishu days for four consecutive years in 2015, 2016, 2017, and 2018 in Kannur, India. Enhanced levels of O3, NO2, NO, and PM10 were observed during the intense usage of fireworks. The concentration of metals in PM10 increased and the percent increase was found to be different for metal traces. A pronounced increase in the aerosol optical depth (AOD) in the lower wavelength region of solar radiation reveals the abundance of fine mode particles. The concentrations of O3 and NO2 were observed to increase by more than 100% on Vishu day than the control days for the observational period. Simulation using the National Center for Atmospheric Research (NCAR) Master Mechanism photochemical box model indicates a more than 100% enhancement in NO2 photolysis rates during the fireworks episode, which leads to a 100% increase in the surface ozone production. Observations as well as model simulations indicate that the enhanced photochemical ozone production from NO2 photolysis is possibly the main driver of ozone production during the Vishu at this site. The air quality index (AQI) revealed the deterioration of air quality at the observational site during the period of Vishu.
This paper highlights the variations of surface ozone (O3), total column ozone (TCO), oxides of nitrogen (NO and NO2), carbon monoxide (CO), sulphur dioxide (SO2), ammonia (NH3), volatile organic compounds (Benzene, Tolune, Ethyle Benzene, Xylenes (collectively called BTEX)), particulate matters (PM10 and PM2.5), and meteorological parameters at the time of an annular solar eclipse on 26 December 2019 at Kannur town in Kerala, South India. The maximum solar obscuration has resulted a decrease in solar radiation by 93%, air temperature by 16.3%, wind speed by 36.1% and an increase in relative humidity by 27.1% at this coastal location. Along with the reduction in solar radiation, the concentration of surface O3 (61.5%) and total column O3 (11.8%) have been observed to decrease at the maximum phase of solar eclipse. CO and NO2 concentration were found to be increased by 28.9% and 42.2%, respectively, while NO exhibited its typical diurnal variation. Further, a decrease in concentrations of SO2 by 17.6%, PM10 by 18.5%, and PM2.5 by 11.3% were observed. NH3 and BTEX were found to be higher than 11.3% and 22.6% of the concentrations in control days. All of these deviated parameters could be seen returning to their normal state after completing the eclipse episode. The variation of photodissociation coefficient j(NO2) values were theoretically calculated from the observed data, which shows a good agreement with the model simulated j(NO2) reduction. This is an extensive second observation on the variation of trace pollutants on solar eclipse, after the partial solar eclipse observed on 15 January 2010 at Kannur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.