Embryonic stem (ES) cells give rise to all cell types of an organism. Since mutations at this embryonic stage would affect all cells and be detrimental to the overall health of an organism, robust mechanisms must exist to ensure that genomic integrity is maintained. To test this proposition, we compared the capacity of murine ES cells to repair DNA double-strand breaks with that of differentiated cells. Of the 2 major pathways that repair double-strand breaks, error-prone nonhomologous end joining (NHEJ) predominated in mouse embryonic fibroblasts, whereas the high fidelity homologous recombinational repair (HRR) predominated in ES cells. Microhomology-mediated end joining, an emerging repair pathway, persisted at low levels in all cell types examined. The levels of proteins involved in HRR and microhomology-mediated end joining were highly elevated in ES cells compared with mouse embryonic fibroblasts, whereas those for NHEJ were quite variable, with DNA Ligase IV expression low in ES cells. The half-life of DNA Ligase IV protein was also low in ES cells. Attempts to increase the abundance of DNA Ligase IV protein by overexpression or inhibition of its degradation, and thereby elevate NHEJ in ES cells, were unsuccessful. When ES cells were induced to differentiate, however, the level of DNA Ligase IV protein increased, as did the capacity to repair by NHEJ. The data suggest that preferential use of HRR rather than NHEJ may lend ES cells an additional layer of genomic protection and that the limited levels of DNA Ligase IV may account for the low level of NHEJ activity.
DNA double-strand breaks (DSBs) in embryonic stem (ES) cells are repaired primarily by homologous recombination (HR). The mechanism by which HR is regulated in these cells, however, remains enigmatic. To gain insight into such regulatory mechanisms, we have asked how protein levels of Rad51, a key component of HR, are controlled in mouse ES cells and mouse embryo fibroblasts (MEFs). The Rad51 protein level is about 15-fold higher in ES cells than in MEFs. The level of Rad51 mRNA, however, is only ∼2-fold higher, indicating that the differences in mRNA levels due to rates of transcription or mRNA stability are not sufficient to account for the large difference in the abundance of Rad51 protein. Comparison of Rad51 half-lives between ES cells and MEFs also did not explain the elevated level of Rad51 protein in the ES cells. A comparative assessment of the Rad51 translation level demonstrated that it is translated with much greater efficacy in ES cells than in MEFs. To determine whether this high level of translation in ES cells is a general phenomenon in these cells or whether it is a characteristic of specific proteins, such as those involved with recombination and cell cycle progression, we compared mechanisms that regulate the level of Pcna in ES cells with those that regulate Rad51. The half-life of Pcna and its rate of synthesis were considerably different from those of Rad51 in ES cells, demonstrating that regulation of Rad51 abundance cannot be generalized to other ES cell proteins and not to proteins involved in DNA replication and cell cycle control. Finally, we show that only a small proportion of the abundant Rad51 protein population is activated under basal conditions in ES cells and recruited to DNA DSBs and/or stalled replication forks.
Genetic dissection of blood pressure (BP) quantitative trait loci (QTLs) in rats has facilitated the fine-mapping of regions linked to the inheritance of hypertension. The goal of the current study was to further fine-map one such genomic region on rat chromosome 1 (BPQTL1b1), the homologous region of which on human chromosome 15 harbors BP QTLs, as reported by four independent studies. Of the six substrains constructed and studied, the systolic BP of two of the congenic strains were significantly lower by 36 and 27 mm Hg than that of the salt-sensitive (S) rat (P < 0.0001, P = 0.0003, respectively). The congenic segments of these two strains overlapped between 135.12 and 138.78 Mb and contained eight genes and two predicted miRNAs. None of the annotations had variants within expressed sequences. These data taken together with the previous localization resolved QTL1b1 with a 70% improvement from the original 7.39 Mb to the current 2.247 Mb interval. Furthermore, the systolic BP of one of the congenic substrains was significantly higher by 20 mm Hg (P < 0.0001) than the BP of the S rat. The limits of this newly identified QTL with a BP increasing effect (QTL1b1a) were between 134.12 and 135.76 Mb, spanning 1.64 Mb, containing two protein-coding genes, Mctp2 and Rgma, and a predicted miRNA. There were four synonymous variants within Mctp2. These data provide evidence for two independent BP QTLs with opposing BP effects within the previously identified BP QTL1b1 region. Additionally, these findings illustrate the complexity underlying the genetic mechanisms of BP regulation, wherein inherited elements beyond protein-coding sequences or known regulatory regions could be operational.
Bifidobacterium species are recognized as important, beneficial microbes in the human gut microbiome, and their ability colonize individuals at different stages of life is influenced by poorly understood interactions between host, dietary, environmental, and ecological factors. The common marmoset is an emerging nonhuman primate model with a short maturation period, making this model amenable to study of the microbiome throughout a life history.
Interactions or epistasis between genetic factors may contribute to "missing heritability." While linkage analyses detect epistasis, defining the limits of the interacting segments poses a significant challenge especially when the interactions are between loci in close proximity. The goal of the present study was to isolate two such epistatic blood pressure (BP) loci on rat chromosome 5. A panel of S.LEW bicongenic strains along with the corresponding monocongenic strains was constructed. BP of each set comprising of one bicongenic and two corresponding monocongenic strains were determined along with the parental Salt-sensitive (S) strain. Epistasis was observed in one out of four sets of congenic strains, wherein systolic blood pressures (SBP) of the two monocongenic strains S.LEW(5)x6Bx9x5a and S.LEW(5)x6Bx9x5b were comparable to that of S, but the SBP of the bicongenic strain S.LEW(5)x6Bx9x5 (157 ± 4.3 mmHg) was significantly lower than that of S (196 ± 6.8 mmHg, P < 0.001). A two-way ANOVA indicated significant interactions between the LEW alleles at the two loci. The interacting loci were 2.02 Mb apart and located within genomic segments spanning 7.77 and 4.18 Mb containing 7,360 and 2,753 candidate variants, respectively. The current study demonstrates definitive evidence for epistasis and provides genetic tools for further dissection of the isolated epistatic BP loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.