Recent advances in omics technologies have led to unprecedented efforts characterizing the molecular changes that underlie the development and progression of a wide array of complex human diseases, including cancer. As a result, multi-omics analyses—which take advantage of these technologies in genomics, transcriptomics, epigenomics, proteomics, metabolomics, and other omics areas—have been proposed and heralded as the key to advancing precision medicine in the clinic. In the field of precision oncology, genomics approaches, and, more recently, other omics analyses have helped reveal several key mechanisms in cancer development, treatment resistance, and recurrence risk, and several of these findings have been implemented in clinical oncology to help guide treatment decisions. However, truly integrated multi-omics analyses have not been applied widely, preventing further advances in precision medicine. Additional efforts are needed to develop the analytical infrastructure necessary to generate, analyze, and annotate multi-omics data effectively to inform precision medicine-based decision-making.
The ability of 20-50 nm nanoparticles to target and modulate the biology of specific types of cells will enable major advancements in cellular imaging and therapy in cancer and atherosclerosis. A key challenge is to load an extremely high degree of targeting, imaging, and therapeutic functionality into small, yet stable particles. Herein we report ~30 nm stable uniformly sized near-infrared (NIR) active, superparamagnetic nanoclusters formed by kinetically controlled self-assembly of goldcoated iron oxide nanoparticles. The controlled assembly of nanocomposite particles into clusters with small primary particle spacings produces collective responses of the electrons that shift the absorbance into the NIR region. The nanoclusters of ~70 iron oxide primary particles with thin gold coatings display intense NIR (700-850 nm) absorbance with a cross section of ~10 −14 m 2 . Because of the thin gold shells with an average thickness of only 2 nm, the r 2 spin-spin magnetic relaxivity is 219 mM −1 s −1 , an order of magnitude larger than observed for typical iron oxide particles with thicker gold shells. Despite only 12% by weight polymeric stabilizer, the particle size and NIR absorbance change very little in deionized water over 8 months. High uptake of the nanoclusters by macrophages is facilitated by the dextran coating, producing intense NIR contrast in dark field and hyperspectral microscopy, both in cell culture and an in vivo rabbit model of atherosclerosis. Small nanoclusters with optical, magnetic, and therapeutic functionality, designed by assembly of *Address correspondence to: kpj@che.utexas.edu, FELDMANM@uthscsa.edu. Supporting Information Available: Reproducibility in nanorose size distribution; porosity of dextran in the shells about the iron oxide particle; estimation of number of particles per nanocluster; average optical density spectra in macrophages labeled with nanorose by hyperspectral microscopy; and laser vaporization of macrophages in vitro. This material is available free of charge via the Internet at http://pubs.acs.org. NIH Public AccessAuthor Manuscript ACS Nano. Author manuscript; available in PMC 2010 September 22. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript nanoparticle building blocks, offer broad opportunities for targeted cellular imaging, therapy, and combined imaging and therapy. Keywordsgold; iron oxide; nanocluster; near-infrared; macrophage targeted imaging; MRI; atherosclerosis; cancer Clinical imaging and/or therapy with multifunctional nanoparticles that target specific types of cells has the potential to transform health care in cancer, atherosclerosis, and other diseases. When the nanoparticle diameters are reduced to 20-50 nm, the biological pathways in targeted cells can undergo profound changes. [1][2][3][4][5] Small nanoparticles, the size of small viruses, permeate barriers more rapidly including cell membranes and leaky vasculature in cancers. The efficacy of vaccines may be enhanced with ultrasmall 20 nm nanoparticles that can dif...
Objective Metabolic disorders increase MCP-1-induced monocyte chemotaxis in mice. The goal of this study was to determine the molecular mechanisms responsible for the enhanced responsiveness of monocytes to chemoattractants induced by metabolic stress. Methods and Results Chronic exposure of monocytes to diabetic conditions induced by human low-density lipoproteins plus high D-glucose concentrations (LDL+HG) promoted Nox4 expression, increased intracellular H2O2 formation, stimulated protein S-glutathionylation, and increased chemotaxis in response to MCP-1, PDGF-B and RANTES. Both, H2O2 added exogenously and overexpression of Nox4 mimicked LDL+HG-induced monocyte priming, whereas Nox4 knockdown protected monocytes against metabolic stress-induced priming and accelerated chemotaxis. Exposure of monocytes to LDL+HG promoted the S-glutathionylation of actin, decreased the F-actin/G-actin ratio and increased actin remodeling in response to MCP-1. Preventing LDL+HG-induced protein S-glutathionylation by overexpressing glutaredoxin 1 (Grx1) prevented monocyte priming and normalized monocyte chemotaxis in response to MCP-1. Induction of hypercholesterolemia and hyperglycemia in C57BL/6 mice promoted Nox4 expression and protein-S-glutathionylation in macrophages, and increased macrophage recruitment into MCP-1-loaded Matrigel plugs implanted subcutaneous in these mice. Conclusions By increasing actin-S-glutathionylation and remodeling, metabolic stress primes monocytes for chemoattractant-induced transmigration and recruitment to sites of vascular injury. This Nox4-dependent process provides a novel mechanism through which metabolic disorders promote atherogenesis.
Rationale: The enhanced formation of intracellular reactive oxygen species (ROS) induced by oxidized low-density lipoprotein (OxLDL) promotes macrophage death, a process likely to contribute to the formation of necrotic cores and the progression of atherosclerotic lesions. Yet macrophage deficiency of phagocytic NADPH oxidase (Nox2), the primary source of ROS in macrophages, does not reduce atherosclerotic lesion development in mice. This suggests an as yet unidentified NADPH oxidase may be present in macrophages and responsible for the intracellular ROS formation induced by OxLDL. Objective: The aim of this study was to identify the source of intracellular ROS involved in macrophage death. Methods and Results: Nox4 was expressed in human monocytes and mature macrophages, and was localized to the endoplasmic reticulum and to defined foci within the nucleus. Nox4 colocalized with p22 phox , and both proteins were upregulated in response to OxLDL stimulation, whereas Nox2/gp91 phox levels remained unchanged. Induction of Nox4 expression, intracellular ROS formation and macrophage cytotoxicity induced by OxLDL were blocked by MEK1/2 inhibition, but not by inhibitors of p38-MAPK (mitogen-activated protein kinase), JNK (Jun N-terminal kinase), or JAK2 (Janus kinase 2). Small interfering RNA knockdown of Nox4 inhibited both intracellular ROS production and macrophage cytotoxicity induced by OxLDL, whereas Nox4 overexpression enhanced both OxLDL-stimulated ROS formation and macrophage death. Conclusions: Nox4 is a novel source of intracellular ROS in human monocytes and macrophages. Induction of Nox4 by OxLDL is mediated by the MEK1/ERK pathway and required for OxLDL cytotoxicity in human macrophages, implicating monocytic Nox4 in atherogenesis.
Monocytic adhesion and chemotaxis are regulated by MAPK pathways, which in turn are controlled by redox-sensitive MAPK phosphatases (MKPs). We recently reported that metabolic disorders prime monocytes for enhanced recruitment into vascular lesions by increasing monocytes' responsiveness to chemoattractants. However, the molecular details of this proatherogenic mechanism were not known. Here we show that monocyte priming results in the S-glutathionylation and subsequent inactivation and degradation of MKP-1. Chronic exposure of human THP-1 monocytes to diabetic conditions resulted in the loss of MKP-1 protein levels, the hyperactivation of ERK and p38 in response to monocyte chemoattractant protein-1 (MCP-1), and increased monocyte adhesion and chemotaxis. Knockdown of MKP-1 mimicked the priming effects of metabolic stress, whereas MKP-1 overexpression blunted both MAPK activation and monocyte adhesion and migration induced by MCP-1. Metabolic stress promoted the Sglutathionylation of MKP-1, targeting MKP-1 for proteasomal degradation. Preventing MKP-1 S-glutathionylation in metabolically stressed monocytes by overexpressing glutaredoxin 1 protected MKP-1 from degradation and normalized monocyte adhesion and chemotaxis in response to MCP-1. Blood monocytes isolated from diabetic mice showed a 55% reduction in MKP-1 activity compared with nondiabetic mice. Hematopoietic MKP-1 deficiency in atherosclerosis-prone mice mimicked monocyte priming and dysfunction associated with metabolic disorders, increased monocyte chemotaxis in vivo, and accelerated atherosclerotic lesion formation. In conclusion, we identified MKP-1 as a central redox-sensitive regulator of monocyte adhesion and migration and showed that the loss of MKP-1 activity is a critical step in monocyte priming and the metabolic stress-induced conversion of blood monocytes into a proatherogenic phenotype.M etabolic disorders such as obesity and diabetes are associated with a state of chronic, low-grade inflammation (1, 2), which appears to contribute to the development of micro-and macrovascular complications such as atherosclerosis, nephropathy, and retinopathy (3-5). The cellular and molecular mechanisms involved in chronic inflammation associated with metabolic disorders are not yet fully understood, but the recruitment of blood monocytes to sites of vascular injury appears to play a central and rate-limiting role in all these complications. Metabolic disorders impact blood vessels at multiple levels, including lipid depositions, endothelial injury, and smooth muscle cell proliferation and migration, which individually or in concert initiate monocyte recruitment and promote vascular inflammation (6, 7). However, metabolic disorders also appear to affect blood monocytes directly. A number of studies reported that monocytes both in patients with metabolic disorders and in dyslipidemic or diabetic mice undergo phenotypical and functional changes that may contribute directly to the development and progression of chronic inflammatory vascular diseases (8-13)...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.