Gene-encoded anti-microbial peptides (AMPs) are widespread in nature, as they are synthesized by microorganisms as well as by multicellular organisms from both the vegetal and the animal kingdoms. These naturally occurring AMPs form a first line of host defense against pathogens and are involved in innate immunity. Depending on their tissue distribution, AMPs ensure either a systemic or a local protection of the organism against environmental pathogens. They are classified into three major groups: (i) peptides with an alpha-helical conformation (insect cecropins, magainins, etc.), (ii) cyclic and open-ended cyclic peptides with pairs of cysteine residues (defensins, protegrin, etc.), and (iii) peptides with an over-representation of some amino acids (proline rich, histidine rich, etc.). Most AMPs display hydrophobic and cationic properties, have a molecular mass below 25-30 kDa, and adopt an amphipathic structure (alpha-helix, beta-hairpin-like beta-sheet, beta-sheet, or alpha-helix/beta-sheet mixed structures) that is believed to be essential to their anti-microbial action. Interestingly, in recent years, a series of novel AMPs have been discovered as processed forms of large proteins. Despite the extreme diversity in their primary and secondary structures, all natural AMPs have the in vitro particularity to affect a large number of microorganisms (bacteria, fungi, yeast, virus, etc.) with identical or complementary activity spectra. This review focuses on AMPs forming alpha-helices, beta-hairpin-like beta-sheets, beta-sheets, or alpha-helix/beta-sheet mixed structures from invertebrate and vertebrate origins. These molecules show some promise for therapeutic use.
Antimicrobial peptides (AMPs) are part of the armament that insects have developed to fight off pathogens. Insect AMPs are typically cationic and often made of less than 100 amino acid residues. Although their structures are diverse, most of the AMPs can be assigned to a limited number of families. The most common structures are represented by peptides assuming a alpha-helical conformation in organic solutions or disulfide-stabilized beta-sheets with or without alpha-helical domains present. The diverse activity spectrum of these peptides may indicate different modes of action. Genetic analysis in the Drosophila model evidenced that multiple signal transduction pathways are activating the genes coding AMPs.
NaV1.7 is a voltage-gated sodium ion channel implicated by human genetic evidence as a therapeutic target for the treatment of pain. Screening fractionated venom from the tarantula Grammostola porteri led to the identification of a 34-residue peptide, termed GpTx-1, with potent activity on NaV1.7 (IC50 = 10 nM) and promising selectivity against key NaV subtypes (20× and 1000× over NaV1.4 and NaV1.5, respectively). NMR structural analysis of the chemically synthesized three disulfide peptide was consistent with an inhibitory cystine knot motif. Alanine scanning of GpTx-1 revealed that residues Trp(29), Lys(31), and Phe(34) near the C-terminus are critical for potent NaV1.7 antagonist activity. Substitution of Ala for Phe at position 5 conferred 300-fold selectivity against NaV1.4. A structure-guided campaign afforded additive improvements in potency and NaV subtype selectivity, culminating in the design of [Ala5,Phe6,Leu26,Arg28]GpTx-1 with a NaV1.7 IC50 value of 1.6 nM and >1000× selectivity against NaV1.4 and NaV1.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.